Targeting genetic alterations of oncogenes by molecular-targeted agents (MTA) is an effective approach for treating cancer. However, there are still no clinical MTA options for many cancers, including esophageal cancer. We used a short hairpin RNA library to screen for a new oncogene in the esophageal cancer cell line KYSE70 and identified YES proto-oncogene 1 () as having a significant impact on tumor growth.
View Article and Find Full Text PDFPurpose: To investigate tolerability, efficacy, and pharmacokinetics/pharmacodynamics of Debio 1347, a selective FGFR inhibitor.
Patients And Methods: This was a first-in-human, multicenter, open-label study in patients with advanced solid tumors harboring gene alterations. Eligible patients received oral Debio 1347 at escalating doses once daily until disease progression or intolerable toxicity.
gene is frequently amplified in gastric cancer. Recently, targeting FGFR2 has drawn attention as a form of gastric cancer therapy, and FGFR-selective inhibitors have shown promising efficacy in clinical studies. Because overcoming acquired resistance is a common problem with molecular targeting drugs, we investigated a resistant mechanism of FGFR inhibitors using the gastric cancer cell line SNU-16, which harbors amplification.
View Article and Find Full Text PDFJ Med Chem
December 2016
The fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases regulates multiple biological processes, such as cell proliferation, migration, apoptosis, and differentiation. Various genetic alterations that drive activation of the receptors and the pathway are associated with tumor growth and survival; therefore, the FGFR family represents an attractive therapeutic target for treating cancer. Here, we report the discovery and the pharmacological profiles of 8 (CH5183284/Debio 1347), an orally available and selective inhibitor of FGFR1, FGFR2, and FGFR3.
View Article and Find Full Text PDFRadioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport.
View Article and Find Full Text PDFBackground: Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology.
Methods: [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA).
When compared with other epithelial ovarian cancers, the clinical characteristics of ovarian clear cell adenocarcinoma (CCC) include 1) a higher incidence among Japanese, 2) an association with endometriosis, 3) poor prognosis in advanced stages, and 4) a higher incidence of thrombosis as a complication. We used high resolution comparative genomic hybridization (CGH) to identify somatic copy number alterations (SCNAs) associated with each of these clinical characteristics of CCC. The Human Genome CGH 244A Oligo Microarray was used to examine 144 samples obtained from 120 Japanese, 15 Korean, and nine German patients with CCC.
View Article and Find Full Text PDFRecent cancer genome profiling studies have identified many novel genetic alterations, including rearrangements of genes encoding FGFR family members. However, most fusion genes are not functionally characterized, and their potentials in targeted therapy are unclear. We investigated a recently discovered gene fusion between FGFR3 and BAI1-associated protein 2-like 1 (BAIAP2L1).
View Article and Find Full Text PDFRhabdomyosarcoma is the most common soft tissue sarcoma affecting children, and the overall cure rate of children with metastatic disease remains below 30%. The CXC chemokine receptor-4 (CXCR4)/stromal cell-derived factor-1 (SDF1) axis has been implicated in the promotion of metastatic potential in several tumors. In this study, we developed a novel anti-CXCR4 mAb, CF172, and investigated its antimetastatic activity against rhabdomyosarcoma cells in vitro and in vivo, to evaluate its potential as a therapeutic antibody to treat rhabdomyosarcoma.
View Article and Find Full Text PDFIntroduction: EML4-ALK is a driver oncogene in non-small-cell lung cancer (NSCLC) and has been developed into a promising molecular target for antitumor agents. Although EML4-ALK is reported to be formed by inversion of chromosome 2, other mechanisms of this gene fusion remain unknown. This study aimed to examine the mechanism of EML4-ALK rearrangement using a novel cell line with the EML4-ALK fusion gene.
View Article and Find Full Text PDFMEK inhibitors are clinically active in BRAF(V600E) melanomas but only marginally so in KRAS mutant tumors. Here, we found that MEK inhibitors suppress ERK signaling more potently in BRAF(V600E), than in KRAS mutant tumors. To understand this, we performed an RNAi screen in a KRAS mutant model and found that CRAF knockdown enhanced MEK inhibition.
View Article and Find Full Text PDFBackground: Positron emission tomography (PET) with [2-18 F]-2-fluoro-2-deoxy-D-glucose ([18 F]FDG-PET) was acquired at multiple time-points a) to monitor the early response to RO5126766 (CH5126766) in xenograft models b) to evaluate non-invasive small animal [18 F]FDG-PET imaging as a biomarker for MEK inhibitors for translation into dose-finding studies in cancer patients and c) to explore the underlying mechanism related to FDG uptake in tumors treated with RO5126766.
Methods: [18 F]FDG uptake was studied in HCT116 (K-ras), COLO205 (B-raf) mutants and COLO320DM (wild type) xenografts from day 0 to 3 of RO5126766 treatment using a microPET Focus 120 and complemented with in vitro incubations, ex-vivo phosphor imaging and immunohistochemical (IHC) analyses.
Results: In the HCT116 (K-ras) and COLO205 (B-raf) mutant xenografts, significant decreases in [18 F]FDG uptake were detected in vivo on day 1 with 0.
Inhibition of heat shock protein 90 (Hsp90) can lead to degradation of multiple client proteins, which are involved in tumor progression. Epidermal growth factor receptor (EGFR) is one of the most potent oncogenic client proteins of Hsp90. Targeted inhibition of EGFR has shown clinical efficacy in the treatment of patients with non-small-cell lung cancer (NSCLC).
View Article and Find Full Text PDFTumors with mutant RAS are often dependent on extracellular signal-regulated kinase (ERK) signaling for growth; however, MEK inhibitors have only marginal antitumor activity in these tumors. MEK inhibitors relieve ERK-dependent feedback inhibition of RAF and cause induction of MEK phosphorylation. We have now identified a MEK inhibitor, CH5126766 (RO5126766), that has the unique property of inhibiting RAF kinase as well.
View Article and Find Full Text PDFNihon Yakurigaku Zasshi
January 2013
Lymphatic spread is an important clinical determinant in the prognosis of many human cancers. The lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) is implicated in the promotion of lymphatic metastasis through the development of lymphatic vessels in some human cancers. In this study, we developed an anti-VEGF-D monoclonal antibody, cVE199, and investigated its in vitro properties, in vivo effects against tumors and possible target indications to evaluate its potential as a therapeutic antibody.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90), a molecular chaperone that plays a significant role in the stability and maturation of client proteins, including oncogenic targets for cell transformation, proliferation, and survival, is an attractive target for cancer therapy. We identified the novel Hsp90 inhibitor, CH5164840, and investigated its induction of oncogenic client protein degradation, antiproliferative activity, and apoptosis against an NCI-N87 gastric cancer cell line and a BT-474 breast cancer cell line. Interestingly, CH5164840 demonstrated tumor selectivity both in vitro and in vivo, binding to tumor Hsp90 (which forms active multiple chaperone complexes) in vitro, and being distributed effectively to tumors in a mouse model, which, taken together, supports the decreased levels of phosphorylated Akt by CH5164840 that we observed in tumor tissues, but not in normal tissues.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK) is a tyrosine kinase that is constitutively activated in certain cancers, following gene alterations such as chromosomal translocation, amplification, or point mutation. Here, we identified CH5424802, a potent, selective, and orally available ALK inhibitor with a unique chemical scaffold, showing preferential antitumor activity against cancers with gene alterations of ALK, such as nonsmall cell lung cancer (NSCLC) cells expressing EML4-ALK fusion and anaplastic large-cell lymphoma (ALCL) cells expressing NPM-ALK fusion in vitro and in vivo. CH5424802 inhibited ALK L1196M, which corresponds to the gatekeeper mutation conferring common resistance to kinase inhibitors, and blocked EML4-ALK L1196M-driven cell growth.
View Article and Find Full Text PDFPurpose: The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in cell proliferation and survival in human cancer. PIK3CA mutations, which are found in many cancer patients, activate the PI3K pathway, resulting in cancer development and progression. We previously identified CH5132799 as a novel PI3K inhibitor.
View Article and Find Full Text PDFWe performed here MS-based phosphoproteomics using both metal oxide affinity chromatography (pSTY proteomics) and anti-phosphotyrosine antibody (pY proteomics). The former method identified mainly phospho-serine and -threonine of nuclear or cytoplasmic proteins, whereas the latter did phosphotyrosine including more plasma membrane proteins and kinases. The overlap between these two methods was limited (24 tyrosine phosphorylation sites out of 325) and, by combining the two, coverage of the signaling molecules was enhanced as exemplified by Erk signaling.
View Article and Find Full Text PDFPurpose: CH4987655 (RO4987655) is an orally active and highly selective small-molecule MEK inhibitor. It potently inhibits mitogen-activated protein kinase signaling pathway activation and tumor cell growth, with an in vitro IC(50) of 5.2 nmol/L for inhibition of MEK1/2.
View Article and Find Full Text PDFBackground: Hormone refractoriness is a lethal event for advanced prostate cancer patients, but the mechanisms of the disease are not well elucidated, especially for the so-called "outlaw" pathways of androgen receptor (AR)-dependent, androgen-independent hormone-refractory prostate cancer.
Methods: Androgen-dependent prostate cancer LNCaP cells were treated with bicalutamide under an androgen-depleted condition to obtain refractory cells. In the obtained cell line, LNCaP-CS10, we analyzed the effects of androgen and bicalutamide on cell growth and prostate-specific antigen (PSA) production.
Here, we report for the first time a comparative phosphoproteomic analysis of distinct tumor cell lines in the presence or absence of the microtubule-interfering agent nocodazole. In total, 1525 phosphorylation sites assigned to 726 phosphoproteins were identified using LC-MS-based technology following phosphopeptide enrichment. Analysis of the amino acid composition surrounding the identified in vivo phosphorylation sites revealed that they could be classified into two motif groups: pSer-Pro and pSer-Asp/Glu.
View Article and Find Full Text PDF