Publications by authors named "Nobuto Kaneko"

Insulin-like growth factor (IGF)-1 promotes the growth of vertebrates, and its binding proteins (IGFBPs) regulate the activity of circulating IGF-1. Three IGFBPs, IGFBP-2b, -1a, and -1b, were consistently detected in the circulatory system of salmonids. IGFBP-2b is thought to be the main carrier of IGFs and promoter of IGF-1-mediated growth in salmonids.

View Article and Find Full Text PDF

The Japanese eel (Anguilla japonica) spends a long period as the leptocephalus larval form under current rearing conditions. The duration of the larval stage until metamorphosis is influenced by body size and growth; however, little knowledge exists of the regulatory mechanism of growth in eel larvae. The present study focused on growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding protein (IGFBP) as the central regulators of growth in teleost fishes and transforming growth factor-beta 3 (TGF-β3) as a possible key modulator of muscle growth and body component synthesis.

View Article and Find Full Text PDF

Salmonids have four subtypes of insulin-like growth factor binding protein (IGFBP)-1, termed -1a1, -1a2, -1b1 and 1b2, owing to teleost- and a lineage-specific whole-genome duplications. We have previously produced recombinant proteins of masu salmon IGFBP-1a1 and -1b2 and conducted functional analysis. To further characterize salmonid-specific IGFBP-1s, we cloned cDNAs encoding mature proteins of IGFBP-1a2 and -1b1 from the liver of masu salmon (Oncorhynchus masou).

View Article and Find Full Text PDF

Insulin-like growth factor binding protein (IGFBP)-1a is one of three major circulating forms in salmon and induced under catabolic conditions. However, there is currently no immunoassay available for this form because of a lack of standard and specific antibodies. We developed a time-resolved fluoroimmunoassay (TR-FIA) for salmon IGFBP-1a using recombinant protein for labeling, an assay standard, and production of antiserum.

View Article and Find Full Text PDF

Monitoring the growth of salmon during their early marine phase provides insights into prey availability, and growth rates may be linked to risks of size-dependent mortality. However, the measurement of growth rate is challenging for free-living salmon in the ocean. Insulin-like growth factor (IGF)-I is a growth-promoting hormone that is emerging as a useful index of growth in salmon.

View Article and Find Full Text PDF

This study aimed to utilize circulating insulin-like growth factor binding protein (IGFBP)-1b as a negative index of growth to evaluate the growth status of juvenile chum salmon (Oncorhynchus keta) in the ocean. First, rearing experiments using PIT-tagged juveniles were conducted to examine the relationship of circulating IGFBP-1b with growth rate of the fish in May and in June. The serum IGFBP-1b level negatively correlated with fish growth rate in both months, suggesting its utility as a negative index of growth.

View Article and Find Full Text PDF

The use of closed containment (CCS) or semi-closed containment systems (S-CCS) for Atlantic salmon Salmo salar aquaculture is under evaluation in Norway. One such system is the Preline S-CCS, a floating raceway system that pumps water from 35 m depth creating a constant current through the system. Exposing fish to moderate water currents is considered aerobic exercise and it is often perceived as positive for fish welfare, growth, food utilization, muscle development and cardiac health.

View Article and Find Full Text PDF

Insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1 and RNA/DNA ratio are endocrine and biochemical parameters used as growth indices in fish, however, they are subjected to environmental modulation. Chum salmon (Oncorhynchus keta) migrate from freshwater (FW) to seawater (SW) at fry/juvenile stage weighing around 1g and suffer growth-dependent mortality during the early phase of their marine life. In order to reveal environmental modulation of the IGF/IGFBP system and establish a reliable growth index for juvenile chum salmon, we examined effects of SW transfer and fasting on IGF-I, IGFBP-1 and RNA/DNA ratio, and correlated them to individual growth rate.

View Article and Find Full Text PDF

In salmon plasma/serum, three major insulin-like growth factor binding proteins (IGFBPs) are consistently detected at 22-, 28- and 41-kDa. The 22-kDa form has been identified as IGFBP-1b and shown to increase under catabolic conditions. We developed a competitive time-resolved fluoroimmunoassay (TR-FIA) for salmon IGFBP-1b.

View Article and Find Full Text PDF

Chum salmon (Oncorhynchus keta) migrate to the ocean in their first spring, and growth during early marine life is critical for survival. We examined the validity of circulating IGF-I and muscle RNA/DNA ratio as indices of growth rate using individually tagged juvenile chum salmon fed or fasted for 10 days. Serum IGF-I level was highly, positively correlated with individual growth rate.

View Article and Find Full Text PDF

Two subtypes of insulin-like growth factor binding protein (IGFBP)-1 are present in salmon blood and they are both up-regulated under catabolic conditions such as stress. The present study examined effects of fasting and re-feeding on IGFBP-1a (28-kDa form) and IGFBP-1b (22-kDa form) both at mRNA and protein levels along with IGF-I and RNA/DNA ratio in yearling masu salmon. Fish were individually tagged and assigned to one of three treatments: Fed, Fasted or Re-fed.

View Article and Find Full Text PDF