Publications by authors named "Nobutaka Tanigaki"

A thin film of unsubstituted polythiophene (PT), an insoluble conjugated polymer, with molecular chains uniaxially oriented in plane was prepared by the friction transfer method. The structure of highly oriented thin films of PT was investigated using grazing-incidence X-ray diffraction (GIXD), ultraviolet-visible (UV-vis) spectroscopy, and infrared (IR) spectroscopy. The polarized UV-vis and IR spectra and GIXD measurements showed the PT molecular chains were well aligned in parallel to the friction direction.

View Article and Find Full Text PDF

The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films.

View Article and Find Full Text PDF

We analyzed the crystallization process of the CH3NH3PbI3 perovskite by observing real-time X-ray diffraction immediately after combining a PbI2 thin film with a CH3NH3I solution. A detailed analysis of the transformation kinetics demonstrated the fractal diffusion of the CH3NH3I solution into the PbI2 film. Moreover, the perovskite crystal was found to be initially oriented based on the PbI2 crystal orientation but to gradually transition to a random orientation.

View Article and Find Full Text PDF

A novel supramolecular nanoarchitecture, comprising C(60)/Co porphyrin nanosheets, was prepared by a simple liquid-liquid interfacial precipitation method and fully characterized by means of optical microscopy, AFM, STEM, TEM, and XRD. It is established that the highly crystalline C(60)/Co porphyrin nanosheets have a simple (1:1) stoichiometry, and when incorporated in bottom-gate, bottom-contact field-effect transistors (FETs), they show ambipolar charge transport characteristics.

View Article and Find Full Text PDF

Controlling the molecular orientation of the conjugated oligomer, α-sexithiophene (6T), is crucial to improve organic optoelectronic device performance. Most 6T molecules evaporated onto quartz and SiO(2)/Si substrates orient nearly perpendicular to the substrate. Here, we report the formation of oriented thin films of 6T on in-plane-oriented polythiophene (PT) films formed by the friction-transfer method.

View Article and Find Full Text PDF

We have investigated a photosensor that consists of a field emission transistor (FET) utilizing the biocomponent of the photosystem I (PSI) protein complex for use in an imaging device. The PSI was immobilized on a gold electrode via the self-assembling monolayer (SAM) of 3-mercapto-1-propanesulfonic acid sodium salt to obtain a PSI-modified gold electrode. As for the PSI-modified gold electrode, the basic photoresponses originating from the excitation of PSI, including the photocurrent (106 nA) and the photoresponse of the open-circuit voltage (photo-Voc: 28.

View Article and Find Full Text PDF

Multilayered oriented polyfluorene (PF) films were obtained by applying thermal treatment procedure to a multilayered PF film constructed with fluorene derivatives layer formed on top of a highly oriented friction-transferred crystalline poly(9,9-dioctylfluorene) (PF8) film. The orientations in the multilayered PF films were investigated by polarized photoluminescence (PL) spectroscopy and grazing incident X-ray diffraction (GIXD) analysis. The results of the multilayered PF film constructed with spin-coated PF8 on friction-transferred PF8 indicate that the rearrangement of the upper PF8 layer is induced from the orientation of lower PF8 layer by thermal treatment at the nematic phase temperature.

View Article and Find Full Text PDF

Poly(2,5-dioctyloxy-1,4-phenylenevinylene) (DOPPV) was found to form a highly oriented film by a friction-transfer technique. Structural investigation of friction-transferred DOPPV was studied by means of polarized ultraviolet-visible (UV-vis) absorption spectroscopy, polarized photoluminescence (PL) spectroscopy, and synchrotron-sourced grazing incident X-ray diffraction (GIXD) analysis. The polarized UV-vis absorption and PL spectra indicate clear axial alignment.

View Article and Find Full Text PDF