Publications by authors named "Nobutaka Shirasaki"

Application of poly-aluminum chloride (PACl) coagulant is a popular mode of water treatment worldwide because of the high capacity of PACl to neutralize charge. The manufacture and use of PACls with various basicities in different regions around the world suggest that the characteristics of the raw water are important determinants of the efficacy of PACl application. However, attention has not been fully paid to the effects of water quality other than the substances to be removed.

View Article and Find Full Text PDF

Proper selection of new contaminants to be regulated or monitored prior to implementation is an important issue for regulators and water supply utilities. Herein, we constructed and evaluated machine learning models for predicting the detectability (detection/non-detection) of pesticides in surface water as drinking water sources. Classification and regression models were constructed for Random Forest, XGBoost, and LightGBM, respectively; of these, the LightGBM classification model had the highest prediction accuracy.

View Article and Find Full Text PDF

Catalytic oxidative removal of Mn on activated-carbon surfaces by free chlorine was recently discovered and found to be potentially practicable for water treatment when using micrometer-sized activated carbon. Herein, we newly derived a kinetic model for trace-substance removal by catalytic reaction and applied it to the Mn removal. External-film mass transfer, adsorption, and oxidation/desorption contributed similarly to the Mn removal rate under actual practical conditions.

View Article and Find Full Text PDF

Submerged-membrane hybrid systems (SMHSs) that combine membrane filtration with powdered activated carbon (PAC) take advantage of PAC's ability to adsorb and remove contaminants dissolved in water. However, the risk of contaminant desorption due to temporal changes in the influent concentration of the contaminant has not been thoroughly explored. In this study, we used a SMHS with conventionally-sized PAC or superfine PAC (SPAC) to remove 2-methylisoborneol (MIB), a representative micropollutant, from water containing natural organic matter (NOM), with the goal of elucidating adsorption-desorption phenomena in the SMHS.

View Article and Find Full Text PDF

One of the main purposes of drinking water treatment is to reduce turbidity originating from clay particles. Relatively little is known about the removal of other types of particles, including conventionally sized powdered activated carbon (PAC) and superfine PAC (SPAC), which are intentionally added during the treatment process; microplastic particles; and viruses. To address this knowledge gap, we conducted a preliminary investigation in full-scale water treatment plants and then studied the removal of these particles during coagulation-flocculation, sedimentation, and rapid sand filtration (CSF) in bench-scale experiments in which these particles were present together.

View Article and Find Full Text PDF

Drinking water quality guideline values for toxic compounds are determined based on their acceptable daily intake. The toxicological end point for determining the acceptable daily intake of most organophosphorus insecticides is inhibition of acetylcholinesterase (AChE). Although insecticides ingested with drinking water are partly metabolized by the liver before transport to the rest of the body, no current cell-independent AChE activity assay takes the effects of metabolism into account.

View Article and Find Full Text PDF

1,4-Dioxane is one of the most persistent organic micropollutants in conventional drinking-water-treatment processes. Vacuum ultraviolet (VUV) treatment is a promising means of removing micropollutants such as 1,4-dioxane from source water, but this approach has not yet been implemented in a full-scale water treatment plant, partly because the operating parameters for pilot and full-scale VUV photoreactors have not been optimized. Here, we developed a computational fluid dynamics-based method for optimizing VUV photoreactor performance through energy-based analyses that take into account the effects of two important operating parameters-flow rate and radiant exitance.

View Article and Find Full Text PDF
Article Synopsis
  • Superfine powdered activated carbon exhibits great adsorption abilities, but it isn't typically used in standard water treatment systems due to worries about its leftover presence in treated water.
  • The study identified the existence of "stray carbon particles," which remain after the coagulation process, with minimal charge neutralization, leading to their poor removal during sedimentation and flocculation.
  • The research suggests improving the removal of stray carbon particles should be a key goal in enhancing coagulation-sedimentation-filtration (CSF) treatment efficiency, as the effectiveness depends on the design and residence time in the treatment reactors.
View Article and Find Full Text PDF

Here, we examined the removal of soluble divalent manganese (Mn(II)) by combination treatment with superfine powdered activated carbon (SPAC) and free chlorine in a membrane filtration pilot plant and batch experiments. Removal rates >95% were obtained with 3 mg/L SPAC, 1 mg/L chlorine, and a contact time of 4 min, meeting practical performance standards. Mn(II) was found to be oxidized and precipitated on the surface of the activated carbon particles by chlorine.

View Article and Find Full Text PDF

Several risk scoring and ranking methods have been applied for the prioritization of micropollutants, including pesticides, and in the selection of pesticides to be regulated regionally and nationally. However, the effectiveness of these methods has not been evaluated in Japan. We developed a risk prediction method to select pesticides that have a high probability of being detected in drinking water sources where no monitoring data is available.

View Article and Find Full Text PDF

Vacuum ultraviolet (VUV) treatment is a promising advanced oxidation process for the removal of organic contaminants during water treatment. Here, we investigated the formation of disinfection by-products from coexisting organic matter during VUV or ultraviolet (UV) treatment following pre-chlorination, and their fates after post-chlorination, in a standard Suwannee River humic acid water and a natural lake water. VUV treatment after pre-chlorination decreased the total trihalomethane (THM) concentration but increased total aldehyde and chloral hydrate concentrations; total haloacetic acid (HAA) and haloacetonitrile (HAN) concentrations did not change.

View Article and Find Full Text PDF

Organophosphorus insecticides are known to be partly transformed to their respective oxons during the chlorination step of drinking water treatment. For most organophosphorus insecticides, the toxicological endpoint for determining acceptable daily intake levels is inhibition of acetylcholinesterase (AChE). Like the parent insecticides, oxons also inhibit AChE, so the presence of oxons in drinking water is also evaluated.

View Article and Find Full Text PDF

Many PACl (poly-aluminum chloride) coagulants with different characteristics have been trial-produced in laboratories and commercially produced, but the selection of a proper PACl still requires empirical information and field testing. Even PACls with the same property sometimes show different coagulation performances. In this study, we compared PACls produced by AlCl-titration and Al(OH)-dissolution on their performance during coagulation-flocculation, sedimentation, and sand filtration (CSF) processes.

View Article and Find Full Text PDF

Three different natural organic matter (NOM)-loading methods were compared for the adsorptive removal of 2-methylisoborneol (MIB) by superfine powdered activated carbon (SPAC) and conventionally-sized powdered activated carbon (PAC). The three NOM-loading methods were: NOM adsorption followed by MIB (MIB adsorption on NOM-preloaded carbon), MIB adsorption followed by NOM (MIB adsorption on NOM post-loaded carbon), and simultaneous NOM and MIB loading (MIB adsorption on NOM-simultaneously loaded carbon). MIB removals were similar for the smaller-sized carbon (SPAC) at higher AC dosages and at lower initial NOM concentrations.

View Article and Find Full Text PDF

Commercially available powdered activated carbon (PAC) with a median diameter of 12-42 μm was ground into 1 μm sized superfine PAC (SPAC) and 200 nm sized submicron SPAC (SSPAC) and investigated as a pretreatment material for the prevention of hydraulically irreversible membrane fouling during a submerged microfiltration (MF) process. Compared with PAC and SPAC, SSPAC has a high capacity for selective biopolymer adsorption, which is a characteristic found in natural organic matter and is commonly considered to be a major contributor to membrane fouling. Precoating the membrane surface with SSPAC during batch filtration further removes the biopolymers by straining them out.

View Article and Find Full Text PDF

1,4-Dioxane is one of the most persistent organic micropollutants and is quite difficult to remove via conventional drinking water treatment consisting of coagulation, sedimentation, and sand filtration. Vacuum ultraviolet (VUV) treatment has recently been found to show promise as a treatment method for 1,4-dioxane removal, but the associated decomposition rate of 1,4-dioxane is known to be very sensitive to water quality characteristics. Some computational models have been proposed to predict the decomposition rate of micropollutants during VUV treatment, but the effects of only bicarbonate and natural organic matter have been considered in the models.

View Article and Find Full Text PDF

Volatilization volumes and health risks associated with indirect inhalation exposure to formaldehyde evaporated from water have not been investigated quantitatively. We experimentally investigated formaldehyde volatility, compared with chloroform volatility, predicted formaldehyde inhalation exposure concentrations in Japanese bathrooms, and then re-evaluated drinking water quality standards. Although the Henry's law constant of formaldehyde is 1/10 that of chloroform, with a 30-min exposure period, the formaldehyde non-equilibrium partition coefficient (K') was 1/500th the chloroform value because of formaldehyde's faster volatilization rate.

View Article and Find Full Text PDF

Superfine powdered activated carbon (SPAC) of micron to submicron particle size is produced by micro-milling of conventionally sized powdered activated carbon. SPAC has attracted attention because of its high adsorption capacity; however, milling to the submicron particle size range lowers its adsorption capacity. Here, we found that this decrease of adsorption capacity was due to the introduction of oxygen/hydrogen-containing functional groups into the graphene structure of the carbon from water during the milling, causing it to become less hydrophobic.

View Article and Find Full Text PDF

Because of the eminent adsorptive capacity and rate for dissolved organic molecules compared to conventionally-sized powdered activated carbon (PAC), super-fine powdered activated carbon (SPAC) is gathering momentum for use in not only the pretreatment for membrane filtration for drinking water purification but also the conventional water purification process consisting of coagulation-flocculation, sedimentation, and rapid sand-filtration (CSF). However, the probability of SPAC particles to leak through a sand bed is higher than that of PAC, and their strict leakage control is an issue to be challenged when applying SPAC to CSF. However, study focusing on very high particle removal, which yield residual concentrations down to around 100 particles/mL, has been very limited.

View Article and Find Full Text PDF

Superfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation-flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment.

View Article and Find Full Text PDF

Removal efficiencies of 28 pesticide transformation products (TPs) and 15 parent pesticides during steps in drinking water treatment (coagulation-sedimentation, activated carbon adsorption, and ozonation) were estimated via laboratory-scale batch experiments, and the mechanisms underlying the removal at each step were elucidated via regression analyses. The removal via powdered activated carbon (PAC) treatment was correlated positively with the log K at pH 7. The adjusted coefficient of determination (r) increased when the energy level of the highest occupied molecular orbital (HOMO) was added as an explanatory variable, the suggestion being that adsorption onto PAC particles was largely governed by hydrophobic interactions.

View Article and Find Full Text PDF

The probability distributions of total potential doses of disinfection byproducts and volatile organic compounds via ingestion, inhalation, and dermal exposure were estimated with Monte Carlo simulations, after conducting physiologically based pharmacokinetic model simulations to takes into account the differences in availability between the three exposures. If the criterion that the 95th percentile estimate equals the TDI (tolerable daily intake) is regarded as protecting the majority of a population, the drinking water criteria would be 140 (trichloromethane), 66 (bromodichloromethane), 157 (dibromochloromethane), 203 (tribromomethane), 140 (dichloroacetic acid), 78 (trichloroacetic acid), 6.55 (trichloroethylene, TCE), and 22 μg/L (perchloroethylene).

View Article and Find Full Text PDF

We used Ames assays to investigate the effects of ozonation (designated O), ozonation followed by chlorination (O/Cl), an advanced oxidation process (AOP, UV/HO), and AOP followed by chlorination (AOP/Cl) on the mutagenicity of solutions of 3-methyl-4-nitrophenol (3M4NP), a major environmental degradation product of the organophosphorus insecticide fenitrothion. Whereas O did not induce mutagenicity, O/Cl, AOP, and AOP/Cl converted 3M4NP into mutagenic transformation products (TPs). Using liquid chromatography-mass spectrometry, we detected a total of 138 peaks in the solutions subjected to O/Cl, AOP, and AOP/Cl.

View Article and Find Full Text PDF

Off-flavor in drinking water can be caused by transformation products (TPs) generated from organic compounds, such as amino acids, present during chlorination. However, the contributions of many of these TPs to overall off-flavor have not been quantified, mainly because the lack of appropriate chemical standards prevents sensory evaluation by means of a conventional flask test. In the present study, we used gas chromatography-mass spectrometry-olfactometry (GC-MS-O) to identify compounds responsible for the off-flavor generated by chlorination of an aqueous solution of the amino acid phenylalanine, and we propose a sensory evaluation procedure for quantification of the contributions of the identified TPs to the overall off-flavor, regardless of the availability of chemical standards of the TPs.

View Article and Find Full Text PDF