Under the strict quarantine policy imposed to combat the COVID-19 (coronavirus disease 2019) pandemic in Japan, the prevalence of respiratory infections by viruses other than SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has been largely unknown. However, such information on viral circulation is important in order to develop better management policies that are based on scientific data. Here, we retrospectively investigated respiratory virus infections in individuals who visited a community hospital with respiratory symptoms between June of 2020 and September of 2021 with the use of the BioFire FilmArray Respiratory Panel 2.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2022
Homopolymeric tracts (HPTs) can lead to phase variation and DNA replication slippage, driving adaptation to environmental changes and evolution of genes and genomes. However, there is limited information on HPTs in ; therefore, we conducted a comprehensive cross-strain search for HPTs in genomes. We determined the HPT genomic distribution and identified a pattern of high-frequency HPT localization in pathogenic lineages.
View Article and Find Full Text PDFThe outer membrane of Gram-negative bacteria functions as an impermeable barrier to foreign compounds. Thus, modulating membrane transport can contribute to improving susceptibility to antibiotics and efficiency of bioproduction reactions. In this study, the cellular uptake of hydrophobic and large-scaffold antibiotics and other compounds in Gram-negative bacteria was investigated by modulating the homolog expression of bamB encoding an outer membrane lipoprotein and tolC encoding an outer membrane efflux protein via gene deletion and gene silencing.
View Article and Find Full Text PDFWe determined the whole genome sequences of three bacterial strains, designated as FNDCR1, FNDCF1, and FNDCR2, isolated from a practical nata-de-coco producing bacterial culture. Only FNDCR1 and FNDCR2 strains had the ability to produce cellulose. The 16S rDNA sequence and phylogenetic analysis revealed that all strains belonged to the genus but belonged to a different clade within the genus.
View Article and Find Full Text PDFEscherichia coli MazF is a toxin protein that cleaves RNA at ACA sequences. Its activation has been thought to cause growth inhibition, primarily through indiscriminate cleavage of RNA. To investigate responses following MazF activation, transcriptomic profiles of mazF-overexpressing and non-overexpressing E.
View Article and Find Full Text PDFMicrobiol Resour Announc
April 2019
JCM 3201 can express several recombinant proteins that are difficult to express in It is used as one of the hosts for protein expression and bioconversion. Here, we report the draft genome sequence of JCM 3201.
View Article and Find Full Text PDFBackground: Although some meteorological factor are likely to contribute to the onset of hemoptysis, few studies have investigated this issue, with none conducted in the Asia-Pacific region. Therefore, the present study aimed to evaluate the associations of meteorological factors with the occurrence of hemoptysis. Differences in the frequency of hemoptysis among several calendar variables were also assessed.
View Article and Find Full Text PDFBackground: Although several studies have suggested that primary spontaneous pneumothorax (PSP) might occur in clusters, only a few studies have found seasonal variations in PSP occurrence. Some meteorological parameters might be related to the occurrence of PSP occurrence, however, the effects of weather variations on the onset of PSP are still controversial.
Methods: We examined seasonal differences in the occurrence of PSP and the meteorological risk factors for PSP.
In traditional Caucasian yogurt, bacteria play important roles in the fermentation of milk in concert with bacteria. In this study, an strain, FAN1, was newly isolated from commercially available Caucasian yogurt, and its whole-genome sequence was determined, identifying two circular DNAs.
View Article and Find Full Text PDFAcetoin is used in the biochemical, chemical and pharmaceutical industries. Several effective methods for acetoin production from petroleum-based substrates have been developed, but they all have an environmental impact and do not meet sustainability criteria. Here we describe a simple and efficient method for acetoin production from oil palm mesocarp fiber hydrolysate using engineered Escherichia coli.
View Article and Find Full Text PDFObjective: A lignin-degrading bacterium, Burkholderia sp. CCA53, was previously isolated from leaf soil. The purpose of this study was to determine phenotypic and biochemical features of Burkholderia sp.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
July 2017
To generate an organism capable of producing d-lactate, NAD-dependent d-lactate dehydrogenase was expressed in our pyruvate-producing strain, Escherichia coli strain LAFCPCPt-accBC-aceE. After determining the optimal culture conditions for d-lactate production, 18.4 mM d-lactate was produced from biomass-based medium without supplemental mineral or nitrogen sources.
View Article and Find Full Text PDFPyruvate plays an essential role in the central carbon metabolism of multiple organisms and is used as a raw material in the chemical, biochemical and pharmaceutical industries. To meet demand, large amounts of pyruvate are produced through fermentation processes. Here we describe a simple and efficient method for producing pyruvate in Escherichia coli.
View Article and Find Full Text PDFBurkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.
View Article and Find Full Text PDFMicrobial degradation of lignin releases fermentable sugars, effective utilization of which could support biofuel production from lignocellulosic biomass. In the present study, a lignin-degrading bacterium was isolated from leaf soil and identified as Burkholderia sp. based on 16S rRNA gene sequencing.
View Article and Find Full Text PDFWe collected several biofilm samples from Japanese rivers and established a reproducible multi-species biofilm model that can be analyzed in laboratories. Bacterial abundance at the generic level was highly similar between the planktonic and biofilm communities, whereas comparative metatranscriptomic analysis revealed many upregulated and downregulated genes in the biofilm. Many genes involved in iron-sulfur metabolism, stress response, and cell envelope function were upregulated; biofilm formation is mediated by an iron-dependent signaling mechanism and the signal is relayed to stress-responsive and cell envelope function genes.
View Article and Find Full Text PDFTwo genes from Kluyveromyces marxianus strain DMB1, YGL039w1 and YGL039w2, encode putative uncharacterized oxidoreductases that respectively share 42 and 44% identity with the Saccharomyces cerevisiae S288c NADPH-dependent methylglyoxal reductase (EC 1.1.1.
View Article and Find Full Text PDFCounterselection is a genetic engineering technique to eliminate specific genetic fragments containing selectable marker genes. Although the technique is widely used in bacterial genome engineering and plasmid curing experiments, the repertoire of the markers usable in Escherichia coli is limited. Here we developed a novel counterselection method in E.
View Article and Find Full Text PDFThe open reading frame YGL157w in the genome of the yeast Kluyveromyces marxianus strain DMB1 encodes a putative uncharacterized oxidoreductase. However, this protein shows 46% identity with the Saccharomyces cerevisiae S288c NADPH-dependent methylglyoxal reductase, which exhibits broad substrate specificity for aldehydes. In the present study, the YGL157w gene product (KmGRE2) was purified to homogeneity from overexpressing Escherichia coli cells and found to be a monomer.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2015
Isobutanol is attracting attention as a potential biofuel because it has higher energy density and lower hygroscopicity than ethanol. To date, several effective methods for microbial production of isobutanol have been developed, but they require expensive reagents to maintain expression plasmids and induce expression, which is not suitable for practical production. Here, we describe a simple and efficient method for isobutanol production in Escherichia coli.
View Article and Find Full Text PDFIn this study, we describe a novel method for producing valuable chemicals from glucose and xylose in Escherichia coli. The notable features in our method are avoidance of plasmids and expensive inducers for foreign gene expression to reduce production costs; foreign genes are knocked into the chromosome, and their expression is induced with xylose that is present in most biomass feedstock. As loci for the gene knock-in, lacZYA and some pseudogenes are chosen to minimize unexpected effects of the knock-in on cell physiology.
View Article and Find Full Text PDFGenome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption), knock-in (insertion), and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes.
View Article and Find Full Text PDFWe describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently.
View Article and Find Full Text PDFSugar derived from biomass is usually a mixture of glucose and other sugars. When mixed sugars are fed to Escherichia coli, glucose is preferentially utilized while other sugars remain unutilized. This phenomenon is known as carbon catabolite repression (CCR).
View Article and Find Full Text PDFThe genus Rhodococcus exhibits a broad range of catalytic activity and is tolerant to various kinds of organic solvents. This property makes rhodococci suitable for use as a whole-cell catalyst. Various tools for genetic engineering have been developed to use Rhodococcus erythropolis as a host for bioconversion.
View Article and Find Full Text PDF