Specific and nongenetic IAP-dependent Protein Erasers (SNIPERs) are a kind of PROTACs recruiting IAP ubiquitin ligases to induce degradation of target proteins. We have developed a series of SNIPERs against BCR-ABL oncogenic kinases by employing kinase inhibitors as target ligands. Some of these SNIPERs show potent activities to degrade BCR-ABL protein and inhibit CML cell growth.
View Article and Find Full Text PDFThe identification, structure-activity relationships (SARs), and biological effects of new antimalarials consisting of a 2,3,4,9-tetrahydro-1H-β-carboline core, a coumarin ring, and an oxyalkanoyl linker are described. A cell-based phenotypic approach was employed in this search for novel antimalarial drugs with unique modes of action. Our screening campaign of the RIKEN compound library succeeded in the identification of the known tetrahydro-β-carboline derivative (4e) as a hit compound showing significant in vitro activity.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2022
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3), which has been identified in many cancers such as glioblastoma and bladder cancer, is a potent oncogenic fusion protein that induces constitutive activation of FGFR signaling, resulting in uncontrolled cell proliferation. Although several tyrosine kinase inhibitors against FGFR are currently under development, resistance to such types of inhibitors in patients has become a concern. In this study, a chimeric molecule SNIPER(TACC3)-11 (5a) was developed and found to reduce FGFR3-TACC3 levels effectively.
View Article and Find Full Text PDFRetinol-binding protein 4 (RBP4) is a potential drug target for metabolic and ophthalmologic diseases. A high-throughput screening of our compound library has identified a small-molecule RBP4 reducer 7a, as a hit compound. Aiming to provide a suitable tool for investigating the pharmacological effects of RBP4 reducers, we conducted a structure-activity relationship study of 7a.
View Article and Find Full Text PDFA phenotypic high-throughput screen allowed discovery of quinazolinone-2-carboxamide derivatives as a novel antimalarial scaffold. Structure-activity relationship studies led to identification of a potent inhibitor , 95-fold more potent than the original hit compound, active against laboratory-resistant strains of malaria. Profiling of suggested a fast killing profile.
View Article and Find Full Text PDFIn our pursuit of developing a novel, potent, and selective cell division cycle 7 (Cdc7) inhibitor, we optimized the previously reported thieno[3,2-]pyrimidinone analogue showing time-dependent Cdc7 kinase inhibition and slow dissociation kinetics. These medicinal chemistry efforts led to the identification of compound , which exhibited potent cellular activity, excellent kinase selectivity, and antitumor efficacy in a COLO205 xenograft mouse model. However, the issue of formaldehyde adduct formation emerged during a detailed study of , which was deemed an obstacle to further development.
View Article and Find Full Text PDFReplication stress (RS) is a cancer hallmark; chemotherapeutic drugs targeting RS are widely used as treatments for various cancers. To develop next-generation RS-inducing anticancer drugs, cell division cycle 7 (CDC7) has recently attracted attention as a target. We have developed an oral CDC7-selective inhibitor, TAK-931, as a candidate clinical anticancer drug.
View Article and Find Full Text PDFTargeted protein degradation by small molecules is an emerging modality with significant potential for drug discovery. We previously developed chimeric molecules, termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs), which induce the ubiquitylation and proteasomal degradation of target proteins. This degradation is mediated by the IAPs; the target proteins include bromodomain-containing protein 4 (BRD4), an epigenetic regulator protein.
View Article and Find Full Text PDFChronic myelogenous leukemia (CML) is characterized by the oncogenic fusion protein, BCR-ABL protein kinase, against which clinically useful inhibitors have been developed. An alternative approach to treat CML is to degrade the BCR-ABL protein. Recently, potent degraders against BCR-ABL have been developed by conjugating dasatinib to ligands for E3 ubiquitin ligases.
View Article and Find Full Text PDFAberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins.
View Article and Find Full Text PDFProtein degradation technology based on hybrid small molecules is an emerging drug modality that has significant potential in drug discovery and as a unique method of post-translational protein knockdown in the field of chemical biology. Here, we report the first example of a novel and potent protein degradation inducer that binds to an allosteric site of the oncogenic BCR-ABL protein. BCR-ABL allosteric ligands were incorporated into the SNIPER (Specific and Nongenetic inhibitor of apoptosis protein [IAP]-dependent Protein Erasers) platform, and a series of biological assays of binding affinity, target protein modulation, signal transduction, and growth inhibition were carried out.
View Article and Find Full Text PDFTargeted protein degradation using small molecules is a novel strategy for drug development. We have developed hybrid molecules named specific and nongenetic inhibitor of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to degrade target proteins. Here, we show novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR).
View Article and Find Full Text PDFChromosomal translocation occurs in some cancer cells, which results in the expression of aberrant oncogenic fusion proteins that include BCR-ABL in chronic myelogenous leukemia (CML). Inhibitors of ABL tyrosine kinase, such as imatinib and dasatinib, exhibit remarkable therapeutic effects, although emergence of drug resistance hampers the therapy during long-term treatment. An alternative approach to treat CML is to downregulate the BCR-ABL protein.
View Article and Find Full Text PDFIn order to increase the success rate for developing new Cdc7 inhibitors for cancer therapy, we explored a new chemotype which can comply with the previously-constructed pharmacophore model. Substitution of a pyridine ring of a serendipitously-identified Cdc7 inhibitor 2b with a 3-methylpyrazole resulted in a 4-fold increase in potency and acceptable kinase selectivity, leading to the identification of thieno[3,2-d]pyrimidin-4(3H)-one as an alternative scaffold. Structure-activity relationship (SAR) study revealed that incorporation of a substituted aminomethyl group into the 2-position improved kinase selectivity.
View Article and Find Full Text PDFCell division cycle 7 (Cdc7) is a serine/threonine kinase that plays important roles in the regulation of DNA replication process. A genetic study indicates that Cdc7 inhibition can induce selective tumor-cell death in a p53-dependent manner, suggesting that Cdc7 is an attractive target for the treatment of cancers. In order to identify a new class of potent Cdc7 inhibitors, we generated a putative pharmacophore model based on in silico docking analysis of a known inhibitor with Cdc7 homology model.
View Article and Find Full Text PDFWe previously developed a hybrid small molecule SNIPER (Specific and Nongenetic IAP-dependent Protein ERaser) against transforming acidic coiled-coil-3 (TACC3), SNIPER(TACC3), that induces proteasomal degradation of TACC3 protein. In this study, we found that SNIPER(TACC3) induces cytoplasmic vacuolization derived from endoplasmic reticulum (ER) and paraptosis-like cell death selectively in cancer cells. Mechanistic analysis suggests that accumulation of ubiquitylated protein aggregates that requires X-linked inhibitor of apoptosis protein (XIAP) induces ER stress, which results in ER-stress responses involving X-box binding protein-1 (XBP-1) and ER-derived vacuolization in cancer cells.
View Article and Find Full Text PDFMany diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies on selective degradation of pathogenic proteins via small chimeric molecules linking an E3 ubiquitin ligase to the targeted protein for proteasomal degradation.
View Article and Find Full Text PDFAmino-acid mutations of Gly (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers.
View Article and Find Full Text PDFMcl-1 and Bcl-xL are crucial regulators of apoptosis, therefore dual inhibitors of both proteins could serve as promising new anticancer drugs. To design Mcl-1/Bcl-xL dual inhibitors, we performed structure-guided analyses of the corresponding selective Mcl-1 and Bcl-xL inhibitors. A cocrystal structure of a pyrazolo[1,5-a]pyridine derivative with Mcl-1 protein was successfully determined and revealed the protein-ligand binding mode.
View Article and Find Full Text PDFAn epidemic of metabolic diseases including type 2 diabetes and obesity is undermining the health of people living in industrialized societies. There is an urgent need to develop innovative therapeutics. The peroxisome proliferator-activated receptor gamma (PPARgamma) is one of the ligand-activated transcription factors in the nuclear hormone receptor superfamily and a pivotal regulator of glucose and lipid homeostasis.
View Article and Find Full Text PDFDesign, synthesis, and structure-activity relationships of thieno[2,3-b]pyridin-4-one-based non-peptide luteinizing hormone-releasing hormone (LHRH) receptor antagonists are described. Starting with the thienopyridin-4-one derivative 26d (T-98475) an optimization study was performed, which resulted in the identification of a highly potent and orally bioavailable LHRH receptor antagonist, 3-(N-benzyl-N-methylaminomethyl)-7-(2,6-difluorobenzyl)-4,7-dihydro-2-[4-(1-hydroxy-1-cyclopropanecarboxamido)phenyl]-5-isobutyryl-4-oxothieno[2,3-b]pyridine (33c). Compound 33c displayed subnanomolar in vitro activities for the human receptor and its oral administration caused effective suppression of the plasma LH levels in castrated male cynomolgus monkeys.
View Article and Find Full Text PDFTAK-013 is a novel nonpeptide and orally active GnRH antagonist. We first examined the effect of TAK-013 on GnRH-stimulated LH release using primary-cultured pituitary cells of cynomolgus monkeys. TAK-013 suppressed LH release to below basal levels at concentrations higher than 100 nM with the IC(50) value of 36 nM.
View Article and Find Full Text PDFWe have previously disclosed the first potent and orally effective non-peptide antagonist for the human luteinizing hormone-releasing hormone (LHRH) receptor, a thieno[2,3-b]pyridin-4-one derivative, T-98475 (1). Extensive research on developing non-peptide LHRH antagonists has been carried out by employing a strategy of replacing the thienopyridin-4-one nucleus with other heterocyclic surrogates. We describe herein the design and synthesis of a series of thieno[2,3-d]pyrimidine-2,4-dione derivatives containing a biaryl moiety, which led to the discovery of a highly potent and orally active non-peptide LHRH antagonist, 5-(N-benzyl-N-methylaminomethyl)-1-(2,6-difluorobenzyl)-6-[4-(3-methoxyureido)phenyl]-3-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione (9k: TAK-013).
View Article and Find Full Text PDFThe design and synthesis of a new class of nonpeptide luteinizing hormone-releasing hormone (LHRH) receptor antagonists, the 2-phenylimidazo[1,2-a]pyrimidin-5-ones, is reported. Among compounds described in this study, we identified the potent antagonist 15b with nanomolar in vitro functional antagonism. The result might suggest that the heterocyclic 5-6-ring system possessing a pendant phenyl group attached to the five-membered ring is the important structural feature for a scaffold of small molecule LHRH antagonists.
View Article and Find Full Text PDF