Publications by authors named "Nobumasa Yakushiji"

We have reported that retinoid X receptor (RXR) partial agonist 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid (CBt-PMN, 4a) shows a significant antidiabetes effect in the KK-A(y) type 2 diabetes model mice, with reduced side effects compared to RXR full agonists. To elucidate the mechanism of the RXR partial agonist activity of 4a, we synthesized derivatives of 4a, evaluated their RXR agonist activity, and performed structure-activity relationship analysis. Reporter gene assay revealed that though 6b, which possesses an amino group at the 2-position of 5-carboxybenzimidazole, showed RXR full-agonist activity, compounds 6d and 6e, which possess an oxygen atom and a sulfur atom at the corresponding position, respectively, showed weak RXR agonist activity.

View Article and Find Full Text PDF

Treating insulin resistance and type 2 diabetes in rodents, currently known retinoid X receptor (RXR) agonists induce significant adverse effects. Here we introduce a novel RXR partial agonist CBt-PMN (11b), which shows a potent glucose-lowering effect and improvements of insulin secretion and glucose tolerance without the serious adverse effects caused by RXR full agonists. We suggest that RXR partial agonists may be a new class of antitype 2 diabetes drug candidates.

View Article and Find Full Text PDF

Objective: The pharmacokinetic properties of three newly synthesized retinoid X receptor (RXR) agonists were evaluated in rats to elucidate the structural factor influencing their pharmacokinetic properties.

Material And Methods: Three RXR agonists possessing a common 6-[N-ethyl-N-(3-alkoxy-4-isopropylphenyl)amino]nicotinic acid skeleton and side chain structures that are slightly different from each other were prepared as we previously reported (Takamatsu et al., ChemMedChem, 2008; 3:780-787).

View Article and Find Full Text PDF

Retinoid X receptor (RXR) ligands are attractive candidates for clinical application because of their activity against tamoxifen-resistant breast cancer, taxol-resistant lung cancer, metabolic syndrome, and allergy. Though several RXR ligands, especially RXR antagonists, have been reported, the rational molecular design of such compounds is not well advanced. 4-[N-Methanesulfonyl-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)amino]nicotinic acid (5a) is a moderately RXRalpha-preferential agonist, and we examined the feasibility of replacing the methyl group on the sulfonamide with a longer alkyl chain or an aromatic ring as an approach to produce new RXR antagonists.

View Article and Find Full Text PDF

Retinoid X receptor (RXR) agonists (rexinoids) are attracting much attention for their use in treatment of cancers, including tamoxifen-resistant breast cancer and taxol-resistant lung cancer, and metabolic disease. However, known RXR agonists have a highly lipophilic character. In addition, no subtype-selective RXR agonists have been found.

View Article and Find Full Text PDF

Retinoid X receptor agonists (RXR agonists, rexinoids) are interesting candidates for the treatment of cancers such as tamoxifen-resistant breast cancer and taxol-resistant lung cancer. However, well-known RXR agonists possess a strong lipophilic character. In addition, although RXR has three subtypes, no subtype-selective RXR agonists are known.

View Article and Find Full Text PDF