MEF2C is a critical transcription factor in neurodevelopment, whose loss-of-function mutation in humans results in MEF2C haploinsufficiency syndrome (MHS), a severe form of autism spectrum disorder (ASD)/intellectual disability (ID). Despite prior animal studies of MEF2C heterozygosity to mimic MHS, MHS-specific mutations have not been investigated previously, particularly in a human context as hiPSCs afford. Here, for the first time, we use patient hiPSC-derived cerebrocortical neurons and cerebral organoids to characterize MHS deficits.
View Article and Find Full Text PDFTuberous sclerosis (TSC) is an autosomal dominant disorder caused by heterozygous mutations in the TSC1 or TSC2 gene. TSC is often associated with neurological, cognitive, and behavioral deficits. TSC patients also express co-morbidity with anxiety and mood disorders.
View Article and Find Full Text PDFTranscription factor MEF2C regulates multiple genes linked to autism spectrum disorder (ASD), and human MEF2C haploinsufficiency results in ASD, intellectual disability, and epilepsy. However, molecular mechanisms underlying MEF2C haploinsufficiency syndrome remain poorly understood. Here we report that Mef2c (Mef2c-het) mice exhibit behavioral deficits resembling those of human patients.
View Article and Find Full Text PDFPurpose: Photoreceptor degeneration in the retina is a major cause of blindness in humans. Elucidating mechanisms of degenerative and neuroprotective pathways in photoreceptors should afford identification and development of therapeutic strategies.
Methods: We used mouse genetic models and improved methods for retinal explant cultures.
Gaining mechanistic insight into interaction between causative factors of complex multifactorial diseases involving photoreceptor damage might aid in devising effective therapies. Oxidative stress is one of the potential unifying mechanisms for interplay between genetic and environmental factors that contribute to photoreceptor pathology. Interestingly, the transcription factor myocyte enhancer factor 2d (MEF2D) is known to be important in photoreceptor survival, as knockout of this transcription factor results in loss of photoreceptors in mice.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by synaptic and neuronal loss, which occurs at least partially through oxidative stress induced by oligomeric amyloid-β (Aβ)-peptide. Carnosic acid (CA), a chemical found in rosemary and sage, is a pro-electrophilic compound that is converted to its active form by oxidative stress. The active form stimulates the Keap1/Nrf2 transcriptional pathway and thus production of phase 2 antioxidant enzymes.
View Article and Find Full Text PDFRecent studies have pointed to protein S-nitrosylation as a critical regulator of cellular redox homeostasis. For example, S-nitrosylation of peroxiredoxin-2 (Prx2), a peroxidase widely expressed in mammalian neurons, inhibits both enzymatic activity and protective function against oxidative stress. Here, using in vitro and in vivo approaches, we identify a role and reaction mechanism of the reductase sulfiredoxin (Srxn1) as an enzyme that denitrosylates (thus removing -SNO) from Prx2 in an ATP-dependent manner.
View Article and Find Full Text PDFStroke and vascular dementia are leading causes of morbidity and mortality. Neuroprotective therapies have been proposed but none have proven clinically tolerated and effective. While overstimulation of N-methyl-d-aspartate-type glutamate receptors (NMDARs) is thought to contribute to cerebrovascular insults, the importance of NMDARs in physiological function has made this target, at least in the view of many in 'Big Pharma,' 'undruggable' for this indication.
View Article and Find Full Text PDFHIV-associated neurocognitive disorder (HAND) consists of motor and cognitive dysfunction in a relatively large percentage of patients with AIDS. Prior work has suggested that at least part of the neuronal and synaptic damage observed in HAND may occur due to excessive stimulation of NMDA-type glutamate receptors (NMDARs). Here, we compared pharmacological and genetic manipulation of NMDAR activity using an improved derivative of the NMDAR antagonist memantine, termed NitroMemantine, and the modulatory NMDAR subunit GluN3A in the HIV/gp120 transgenic (tg) mouse model of HAND.
View Article and Find Full Text PDFHitherto, membralin has been a protein of unknown function. Here, we show that membralin mutant mice manifest a severe and early-onset motor neuron disease in an autosomal recessive manner, dying by postnatal day 5-6. Selective death of lower motor neurons, including those innervating the limbs, intercostal muscles, and diaphragm, is predominantly responsible for this fatal phenotype.
View Article and Find Full Text PDF[Briefly describe the contents of the Data in Brief article. Tell the reader the repository and reference number for the data in the abstract to.] The myocyte enhancer factor 2 (MEF2) family of transcription factors is highly expressed in the brain, and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity.
View Article and Find Full Text PDFMutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs).
View Article and Find Full Text PDFThe synaptic toxicity of soluble amyloid-β (Aβ) oligomers plays a critical role in the pathophysiology of Alzheimer's disease (AD). Here we report that overexpressed α1-takusan, which we previously identified as a protein that enhances synaptic activity via interaction with PSD-95, mitigates oligomeric Aβ-induced synaptic loss. In contrast, takusan knockdown results in enhanced synaptic damage.
View Article and Find Full Text PDFBackground: Mutations in the gene encoding parkin, a neuroprotective protein with dual functions as an E3 ubiquitin ligase and transcriptional repressor of p53, are linked to familial forms of Parkinson's disease (PD). We hypothesized that oxidative posttranslational modification of parkin by environmental toxins may contribute to sporadic PD.
Results: We first demonstrated that S-nitrosylation of parkin decreased its activity as a repressor of p53 gene expression, leading to upregulation of p53.
Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT mutation affects NMDAR function, and direct evidence for a causative role is missing.
View Article and Find Full Text PDFSynaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-β peptide (Aβ) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons.
View Article and Find Full Text PDFGlutamatergic synapse maturation is critically dependent upon activation of NMDA-type glutamate receptors (NMDARs); however, the contributions of NR3A subunit-containing NMDARs to this process have only begun to be considered. Here we characterized the expression of NR3A in the developing mouse forebrain and examined the consequences of NR3A deletion on excitatory synapse maturation. We found that NR3A is expressed in many subcellular compartments, and during early development, NR3A subunits are particularly concentrated in the postsynaptic density (PSD).
View Article and Find Full Text PDFThe nucleus accumbens shell (NAc) is a key brain region mediating emotional and motivational learning. In rodent models, dynamic alterations have been observed in synaptic NMDA receptors (NMDARs) within the NAc following incentive stimuli, and some of these alterations are critical for acquiring new emotional/motivational states. NMDARs are prominent molecular devices for controlling neural plasticity and memory formation.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) can potentially differentiate into any cell type, including dopaminergic neurons to treat Parkinson's disease (PD), but hyperproliferation and tumor formation must be avoided. Accordingly, we use myocyte enhancer factor 2C (MEF2C) as a neurogenic and anti-apoptotic transcription factor to generate neurons from hESC-derived neural stem/progenitor cells (NPCs), thus avoiding hyperproliferation. Here, we report that forced expression of constitutively active MEF2C (MEF2CA) generates significantly greater numbers of neurons with dopaminergic properties in vitro.
View Article and Find Full Text PDFRecent evidence suggests that presynaptic-acting NMDA receptors (preNMDARs) are important for neocortical synaptic transmission and plasticity. We found that unique properties of the NR3A subunit enable preNMDARs to enhance spontaneous and evoked glutamate release and that NR3A is required for spike timing-dependent long-term depression in the juvenile mouse visual cortex. In the mature cortex, NR2B-containing preNMDARs enhanced neurotransmission in the absence of magnesium, indicating that presynaptic NMDARs may function under depolarizing conditions throughout life.
View Article and Find Full Text PDFNMDA receptors are typically excited by a combination of glutamate and glycine. Here we describe excitatory responses in CNS myelin that are gated by a glycine agonist alone and mediated by NR1/NR3 "NMDA" receptor subunits. Response properties include activation by d-serine, inhibition by the glycine-site antagonist CNQX, and insensitivity to the glutamate-site antagonist d-APV.
View Article and Find Full Text PDFHyperactivation of NMDA-type glutamate receptors (NMDARs) results in excitotoxicity, contributing to damage in stroke and neurodegenerative disorders. NMDARs are generally comprised of NR1/NR2 subunits but may contain modulatory NR3 subunits. Inclusion of NR3 subunits reduces the amplitude and dramatically decreases the Ca2+ permeability of NMDAR-associated channels in heterologous expression systems and in transgenic mice.
View Article and Find Full Text PDF