Publications by authors named "Nobuhiro Takaya"

Objective: To determine the phase that facilitates flap observation of the ascending aorta in Stanford type A acute aortic dissection with perfused false lumen.

Methods: We reconstructed retrospective Electrocardiogram-gated Computed Tomography Angiography images of the ascending aorta of all 20 patients to 20 phases of curved-multiplanar reconstruction in 5% increment. One radiologist created and randomized 10 cross-sectional images of each phase for every patient and two radiologists scored these images on a 5-point scale depending on the degree of flap stoppage.

View Article and Find Full Text PDF

Burrow structures produced by various benthic animals in sediments are important components of aquatic ecosystems, allowing the circulation of interstitial water via ingress of fresh bottom water into the burrows upon feeding and intraburrow migration. Although X-ray computed tomography has been used to visualize burrow structures, it could not reveal the structures in the soft mud in Lake Kasumigaura, where evaluation of the water-circulation effect of burrows is an important issue. Here, we describe the first attempt to use magnetic resonance (MR) imaging (MRI) to visualize intact burrow structures in the soft mud sediment cores collected from a eutrophic lake.

View Article and Find Full Text PDF

Purpose: The quantitation accuracy in proton magnetic resonance spectroscopy (H MRS) improves at higher B field. However, a larger chemical shift displacement (CSD) and stronger B inhomogeneity exist. In this work, we evaluate the quantitation accuracy for the spectra of metabolite mixtures in phantom experiments at 4.

View Article and Find Full Text PDF

Retrograde menstruation is the backward movement of menstrual fluids. The underlying mechanisms remain unknown. The converse current itself is benign, but the result can be abdominal pain caused by peritoneal irritation and, eventually, endometriosis.

View Article and Find Full Text PDF

Purpose: We propose a post-processing framework for localized two-dimensional (2D) magnetic resonance spectroscopy (MRS) in vivo.

Methods: Our framework consists of corrections on eddy current and subject motion along with the framework used in conventional analytical 2D nuclear magnetic resonance (NMR) spectroscopy. In the eddy current correction, the phases of the free induction decays (FIDs) of the metabolite (1)H are corrected along the t₂ direction by the phase of the FID of water (1)H.

View Article and Find Full Text PDF

In constant time (CT) point-resolved spectroscopy (PRESS), echo centers shift with the fast decay of short T₂* on two-dimensional (2D) time domain (TD) data under inhomogeneous B₀ field like in vivo conditions. Though ¹H decoupling along the F₁ direction is a feature of this method, the tilted and broadened peak pattern on the F₁-F₂ plane after reconstruction causes the peaks to overlap. To enhance resolution to achieve highly resolved 2D CT-PRESS spectra in the human brain, we propose a 2-part window function that comprises an enhancement part for shifting echoes with fast decay and a conventional part, such as Lorentzian, Gaussian, or sine-bell function.

View Article and Find Full Text PDF

Apparent transverse-relaxation rate constants (R₂⁺ = 1/T₂⁺) were measured in various regions of the healthy human brain using a multiecho adiabatic spin-echo sequence at five different magnetic fields, 1.5, 1.9, 3, 4.

View Article and Find Full Text PDF

A new method of non-uniform image correction is proposed. Image non-uniformity is originated from the spatial distribution of RF transmission and reception fields, represented as B(1)(+) and B(1)(-), respectively. In our method, B(1)(+) mapping was performed invivo by a phase method.

View Article and Find Full Text PDF

Maps of the apparent transverse relaxation time (T(2) were collected on a transaxial plane across the basal ganglia in 54 healthy subjects at 4.7T using a multiecho adiabatic spin-echo (MASE) imaging sequence. We attempted to quantify the nonhemin iron concentration ([Fe]) in various brain regions in vivo based on the linear relationship between the apparent relaxation rate constant (R(2) = 1/T(2) and regional [Fe], as demonstrated previously in 12 subjects.

View Article and Find Full Text PDF

Rat seminiferous tubules were visualized for the first time using high-spatial-resolution MRI and their MRI features were investigated under normal and various kinds of pathological conditions. All testes images were obtained at 4.7 T with a dedicated quadrature surface coil.

View Article and Find Full Text PDF

Multiple pairs of adiabatic passage pulses were implemented in a spin-echo sequence to achieve accurate measurements of the apparent transverse relaxation time (T(2)(dagger)) in a short scan time. In experiments on agarose gel phantoms with T(2) values ranging from 30 to 105 ms, the measured T(2)(dagger) values were in good agreement with transverse relaxation times measured with a nonselective Carr-Purcell-Meiboom-Gill sequence. In experiments on normal human brain at 4.

View Article and Find Full Text PDF

A noninvasive NMR technique for evaluating testicular function was explored in this study. Localized in vivo 1H NMR spectroscopy was performed on rat testes using a stimulated echo acquisition mode (STEAM) sequence with a short echo time (TE). In the 1H spectra, large lipid signals dominated the chemical shift range of 0.

View Article and Find Full Text PDF