Chemical functionalisation of semiconducting single-walled carbon nanotubes (SWNTs) can tune their local band gaps to induce near-infrared (NIR) photoluminescence (PL). However, tuning the PL to telecommunication wavelengths (>1300 nm) remains challenging. The selective emergence of NIR PL at the longest emission wavelength of 1320 nm was successfully achieved in (6,5) SWNTs via cyclic perfluoroalkylation.
View Article and Find Full Text PDFBackground: Prognosis of breast cancer patients has been improved along with the progress in cancer therapies. However, cancer therapeutics-related cardiac dysfunction (CTRCD) has been an emerging issue. For early detection of CTRCD, we examined whether native T1 mapping and global longitudinal strain (GLS) using cardiac magnetic resonance (CMR) and biomarkers analysis are useful.
View Article and Find Full Text PDFIn plants and fungi, sphingolipids, characterized by the presence of a sphingoid base (SB), comprise neutral classes, including ceramide (Cer) and glucosylceramide (GlcCer), and acidic classes, including glycosyl inositol phosphoryl ceramide (GIPC). The major class of plant and fungal sphingolipids is GIPC; however, owing to their complicated extraction and analysis, there is still little information regarding the food characteristics of GIPC compounds. In the present study, we evaluated the content and SB composition of highly polar sphingolipids (HPS) in materials that had been obtained from our previous food processing study for GlcCer and Cer.
View Article and Find Full Text PDFObjective: Pulmonary arterial hypertension is characterized by abnormal proliferation of pulmonary artery smooth muscle cells and vascular remodeling, which leads to right ventricular (RV) failure. Bsg (Basigin) is a transmembrane glycoprotein that promotes myofibroblast differentiation, cell proliferation, and matrix metalloproteinase activation. CyPA (cyclophilin A) binds to its receptor Bsg and promotes pulmonary artery smooth muscle cell proliferation and inflammatory cell recruitment.
View Article and Find Full Text PDFSphingolipids, including ceramide (Cer) and glucosylceramide (GlcCer), have the characteristic structural units called sphingoid bases, and are constituents of cell and vacuole membranes. Plant sphingolipids bear highly diverse base structures and the base composition differs depending on the plant species. It is thought that the composition of sphingolipid classes and sphingoid bases is related to membrane fractions.
View Article and Find Full Text PDFBackground Although chronic thromboembolic pulmonary hypertension (CTEPH) and acute pulmonary embolism (APE) share some clinical manifestations, a limited proportion of patients with CTEPH have a history of APE. Moreover, in histopathologic studies, it has been revealed that pulmonary vasculature lesions similar to pulmonary arterial hypertension existed in patients with CTEPH. Thus, it remains unknown whether these 3 disorders also share genetic backgrounds.
View Article and Find Full Text PDFGlucosylceramide (GlcCer), a major sphingolipid in plants and fungi, is known to have food functions, such as preventing intestinal impairment and enhancing the moisture content of skin. This study investigated the influence of fermentation on the composition and function of lipophilic components containing GlcCer in plant-based foods; we compared the effects of ethanol extracts from sake rice (SR) and sake lees (SL) on colon impairment in mice. GlcCer and ceramide (Cer) levels in SL were much higher than those in SR, and GlcCer in SL contained 9-methyl-trans-4,trans-8-sphingadienine as a fungi-specific sphingoid base.
View Article and Find Full Text PDFBackground Circulating proteins are exposed to vascular endothelial layer and influence their functions. Among them, adipsin is a member of the trypsin family of peptidases and is mainly secreted from adipocytes, monocytes, and macrophages, catalyzing the rate-limiting step of the alternative complement pathway. However, its pathophysiological role in cardiovascular disease remains to be elucidated.
View Article and Find Full Text PDFObjective: Despite the recent progress in upfront combination therapy for pulmonary arterial hypertension (PAH), useful biomarkers for the disorder still remain to be developed. SeP (Selenoprotein P) is a glycoprotein secreted from various kinds of cells including pulmonary artery smooth muscle cells to maintain cellular metabolism. We have recently demonstrated that SeP production from pulmonary artery smooth muscle cells is upregulated and plays crucial roles in the pathogenesis of PAH.
View Article and Find Full Text PDFJ Nutr Sci Vitaminol (Tokyo)
March 2020
Glucosylceramide (GlcCer), a representative sphingolipid in cell membranes of plants and fungi, is known to have certain benefits, such as prevention of intestinal impairment and improved skin moisturizing, when consumed. Recently, incidence rates of intestinal impairments have increased in East Asian countries due to changes of people's diet and life style. Therefore, the occurrence of these impairments needs to be prevented through dietary improvement and supplements containing GlcCer.
View Article and Find Full Text PDFBackground: Although cardiac troponin and natriuretic peptide have been shown to decrease after balloon pulmonary angioplasty (BPA) with improved right ventricular afterload in chronic thromboembolic pulmonary hypertension (CTEPH), biomarkers to evaluate the effects of BPA independently of heart failure status remain to be developed.
Methods: In 39 consecutive CTEPH patients including 31 who underwent BPA, we measured plasma levels of cyclophilin A (CyPA), which we demonstrated is secreted from pulmonary vascular smooth muscle cells in response to mechanical stretch and hypoxia.
Results: CyPA levels were elevated in CTEPH patients (12.
Rationale: Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with aberrant pulmonary artery smooth muscle cells (PASMCs) proliferation, endothelial dysfunction, and extracellular matrix remodeling.
Objective: Right ventricular (RV) failure is an important prognostic factor in PAH. Thus, we need to elucidate a novel therapeutic target in both PAH and RV failure.
Objective: Excessive proliferation and apoptosis resistance are special characteristics of pulmonary artery smooth muscle cells (PASMCs) in pulmonary arterial hypertension (PAH). However, the drugs in clinical use for PAH target vascular dilatation, which do not exert adequate effects in patients with advanced PAH. Here, we report a novel therapeutic effect of emetine, a principal alkaloid extracted from the root of ipecac clinically used as an emetic and antiprotozoal drug.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
August 2019
Congestive heart failure (CHF) is rare during pregnancy. We herein report a 35-year-old woman who developed CHF with severe left ventricular dysfunction at 35 weeks' gestation. She underwent emergency Caesarean section followed by intensive-care treatment for CHF.
View Article and Find Full Text PDFRationale: Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) accompanying increased production of inflammatory factors and adaptation of the mitochondrial metabolism to a hyperproliferative state. However, all the drugs in clinical use target pulmonary vascular dilatation, which may not be effective for patients with advanced PAH.
Objective: We aimed to discover a novel drug for PAH that inhibits PASMC proliferation.
Glucosylceramide (GlcCer), a major sphingolipid in plants and fungi, is known to have food functions such as preventing intestinal impairment and enhancing the moisture content of skin. However, there is little information about functions of GlcCer in food sources as most of the studies on GlcCer functions are done using purified GlcCer. This study was performed to investigate the effects of GlcCer contained in food on intestinal impairment; polished rice flour (RF) and this ethanol extract (RE) were used as sources of GlcCer, and these were evaluated by studying the formation of aberrant crypt foci (ACF) in 1,2-dimethylhydrazine (DMH)-treated mice, which is a model of colon cancer.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are fatal diseases; however, their pathogenesis still remains to be elucidated. We have recently screened novel pathogenic molecules and have performed drug discovery targeting those molecules. Pulmonary artery smooth muscle cells (PASMCs) in patients with PAH (PAH-PASMCs) have high proliferative properties like cancer cells, which leads to thickening and narrowing of distal pulmonary arteries.
View Article and Find Full Text PDFAlthough postcapillary pulmonary hypertension (PH) is an important prognostic factor for patients with heart failure (HF), its pathogenesis remains to be fully elucidated. To elucidate the different roles of Rho-kinase isoforms, ROCK1 and ROCK2, in cardiomyocytes in response to chronic pressure overload, we performed transverse aortic constriction (TAC) in cardiac-specific ROCK1-deficient () and ROCK2-deficient () mice. Cardiomyocyte-specific ROCK1 deficiency promoted pressure-overload-induced cardiac dysfunction and postcapillary PH, whereas cardiomyocyte-specific ROCK2 deficiency showed opposite results.
View Article and Find Full Text PDFBackground: Thoracic aortic aneurysm (TAA) and dissection are fatal diseases that cause aortic rupture and sudden death. The small GTP-binding protein GDP dissociation stimulator (SmgGDS) is a crucial mediator of the pleiotropic effects of statins. Previous studies revealed that reduced force generation in aortic smooth muscle cells (AoSMCs) causes TAA and thoracic aortic dissection.
View Article and Find Full Text PDFBackground: Excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) are key mechanisms of pulmonary arterial hypertension (PAH). Despite the multiple combination therapy, a considerable number of patients develop severe pulmonary hypertension (PH) because of the lack of diagnostic biomarker and antiproliferative therapies for PASMCs.
Methods: Microarray analyses were used to identify a novel therapeutic target for PAH.
Rationale: Pulmonary hypertension is a fatal disease; however, its pathogenesis still remains to be elucidated. Thrombin-activatable fibrinolysis inhibitor (TAFI) is synthesized by the liver and inhibits fibrinolysis. Plasma TAFI levels are significantly increased in chronic thromboembolic pulmonary hypertension (CTEPH) patients.
View Article and Find Full Text PDF