Publications by authors named "Nobuhiro Ikezawa"

Benzophenanthridine alkaloids, such as sanguinarine, are produced from reticuline, a common intermediate in benzylisoquinoline alkaloid biosynthesis, via protopine. Four cytochrome P450s are involved in the biosynthesis of sanguinarine from reticuline; i.e.

View Article and Find Full Text PDF

Sesquiterpene lactones (STLs) are terpenoid natural products possessing the γ-lactone, well known for their diverse biological and medicinal activities. The occurrence of STLs is sporadic in nature, but most STLs have been isolated from plants in the Asteraceae family. Despite the implication of the γ-lactone group in many reported bioactivities of STLs, the biosynthetic origins of the γ-lactone ring remains elusive.

View Article and Find Full Text PDF

A wide variety of secondary metabolites are produced in higher plants. These metabolites are synthesized in specific organs/cells at certain developmental stages and/or under specific environmental conditions. Since these biosynthetic activities are rather restricted and difficult to detect, the biochemical characterization of biosynthetic enzymes involved in secondary metabolism has been limited compared to those involved in primary metabolism.

View Article and Find Full Text PDF

Higher plants produce a diverse array of secondary metabolites. These chemicals are synthesized from simple precursors through multistep reactions. To understand how plant cells developed such a complicated metabolism, we examined the plasticity of benzyl isoquinoline alkaloid biosynthesis in transgenic Eschscholzia californica cells with the ectopic expression of Coptis japonica scoulerine-9-O-methyltransferase (CjSMT).

View Article and Find Full Text PDF

Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes approximately 8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid.

View Article and Find Full Text PDF

Effective enantiomeric separations of 1-benzyl-N-methyltetrahydroisoquinolines were achieved using commercially available Chiralcel OD-H and OJ-H columns. Online LC-CD analysis allowed for the establishment of a correlation between the absolute configuration of the separated enantiomers and their characteristic CD transitions. LC-MS combined with LC-CD analysis permitted chiral purity determinations of O-methylated metabolites of nine phenolic 1-benzyl-N-methyltetrahydroisoquinolines in cell cultures of Corydalis, Macleaya, and Nandina species.

View Article and Find Full Text PDF

Eschscholzia californica produces various types of isoquinoline alkaloids. The structural diversity of these chemicals is often due to cytochrome P450 (P450) activities. Members of the CYP719A subfamily, which are found only in isoquinoline alkaloid-producing plant species, catalyze methylenedioxy bridge-forming reactions.

View Article and Find Full Text PDF

Benzylisoquinoline alkaloids, such as the analgesic compounds morphine and codeine, and the antibacterial agents berberine, palmatine, and magnoflorine, are synthesized from tyrosine in the Papaveraceae, Berberidaceae, Ranunculaceae, Magnoliaceae, and many other plant families. It is difficult to produce alkaloids on a large scale under the strict control of secondary metabolism in plants, and they are too complex for cost-effective chemical synthesis. By using a system that combines microbial and plant enzymes to produce desired benzylisoquinoline alkaloids, we synthesized (S)-reticuline, the key intermediate in benzylisoquinoline alkaloid biosynthesis, from dopamine by crude enzymes from transgenic Escherichia coli.

View Article and Find Full Text PDF

Cytochrome P450s (P450) play a key role in oxidative reactions in plant secondary metabolism. Some of them, which catalyze unique reactions other than the standard hydroxylation, increase the structural diversity of plant secondary metabolites. In isoquinoline alkaloid biosyntheses, several unique P450 reactions have been reported, such as methylenedioxy bridge formation, intramolecular C-C phenol-coupling and intermolecular C-O phenol-coupling reactions.

View Article and Find Full Text PDF

(S)-stylopine is an important intermediate in the biosynthesis of benzophenanthridine alkaloids, such as sanguinarine. Stylopine biosynthesis involves the sequential formation of two methylenedioxy bridges. Although the methylenedioxy bridge-forming P450 (CYP719) involved in berberine biosynthesis has been cloned from Coptis japonica[Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K & Sato F (2003) J Biol Chem278, 38557-38565], no information is available regarding the genes for methylenedioxy bridge-forming enzymes in stylopine biosynthesis.

View Article and Find Full Text PDF

In atrazine-tolerant tobacco cells with Ser to Thr mutation at the 264th amino acid of PsbA polypeptide in photosystem II (PSII), electron trannsport around the secondary quinone acceptor (Q(B)) site was inhibited to a greater extent by barbatic acid than in wild-type cells. Further characterization suggests similar mode of action of barbatic acid and phenyl-type herbicides.

View Article and Find Full Text PDF

Two cytochrome P450 (P450) cDNAs involved in the biosynthesis of berberine, an antimicrobial benzylisoquinoline alkaloid, were isolated from cultured Coptis japonica cells and characterized. A sequence analysis showed that one C. japonica P450 (designated CYP719) belonged to a novel P450 family.

View Article and Find Full Text PDF

The effects of several respiration inhibitors on photosystem II (PS II) were investigated. Among the agents tested, piericidin A and thenoyltrifluoroacetone (TTFA) inhibited the photosynthetic electron transport of spinach as measured from chlorophyll (Chl) fluorescence parameters (Fm'-F)/Fm' and Fv/Fm. Using specific donors and acceptors of electrons, we identified the sites of inhibition in and around the PS II complex; the site of inhibition by TTFA was between QA, primary quinone acceptor in PS II, and QB, secondary quinone acceptor, in the acceptor side of P680, the reaction center Chl of PS II, while inhibition by piericidin A of the acceptor side was downstream of Q(B), out of the PS II complex.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: