This study introduced design informatics using deep learning in a topological photonics system and applied it to a topological waveguide with a sharp bending structure to further reduce propagation loss. The sharp bend in the topological waveguide composed of two photonic crystals wherein dielectrics having C symmetry were arranged in triangle lattices of hexagons, and the designing of parameters individually for 6 × 6 unit cells near the bending region using deep learning resulted in an output improvement of 60% compared to the initial structure. The proposed structural design method has high versatility and applicability for various topological photonic structures.
View Article and Find Full Text PDFA defect structure is proposed for enhancing the coupling efficiency of vertically incident circularly polarized light in a topological waveguide. In the topological edge-state waveguide based on triangle lattices of hexagons consisting of six nanoholes respecting C symmetry in a silicon optical circuit, the vertical coupling rate is improved by removing the nanoholes from one hexagonal cell near the line. The coupling efficiency was evaluated with and without the defect structure.
View Article and Find Full Text PDFIn this study, we propose low power consumption, programmable on-chip optical nonlinear units (ONUs) for all-optical neural networks (all-ONNs). The proposed units were constructed using a III-V semiconductor membrane laser, and the nonlinearity of the laser was used as the activation function of a rectified linear unit (ReLU). By measuring the relationship of the output power and input light, we succeeded in obtaining the response as an activation function of the ReLU with low power consumption.
View Article and Find Full Text PDFA magneto-optical switch responding to signal with 200 ps rise time was demonstrated. The switch uses current-induced magnetic field to modulate the magneto-optical effect. Impedance-matching electrodes were designed to apply high-frequency current and accommodate the high-speed switching.
View Article and Find Full Text PDFWe demonstrate a membrane photonic integrated circuit (MPIC) that includes a membrane distributed feedback (DFB) laser and a p-i-n photodiode with a buried-ridge-waveguide (BRW) on a Si substrate, using a-Si nanofilm-assisted room-temperature surface activated bonding (SAB) for on-chip optical interconnection. The BRW structure enhanced the lateral optical confinement compared with that of the conventional flat structure. The directly bonded membrane DFB laser using SAB had a lower thermal resistance and higher output power than the previous structure using a benzocyclobutene (BCB) bonding layer.
View Article and Find Full Text PDFIn this study, we developed a photonic band microscope based on hyperspectral Fourier image spectroscopy. The developed device constructs an infrared photonic band structure from Fourier images for various wavelength obtained by hyperspectral imaging, which make it possible to speedily measure the dispersion characteristics of photonic nanostructures. By applying the developed device to typical photonic crystals and topological photonic crystals, we succeeded in obtaining band structures in good agreement with the theoretical prediction calculated by the finite element method.
View Article and Find Full Text PDFWe propose a method for selectively propagating optical vortex modes with specific charge numbers in a photonic integrated circuit (PIC) by using a topological photonic system. Specifically, by performing appropriate band tuning in two photonic structures that comprise a topological waveguide, one specific electromagnetic mode at the Γ point of a band diagram can be excited. Based on theoretical analysis, we successfully propagated optical vortex modes with specific charge numbers over a wide range in the C band in the proposed topological waveguide.
View Article and Find Full Text PDFIn this study, we propose a defect structure that enhances the vertical coupling efficiency of circularly polarized light incident on topological waveguides consisting of triangle nanoholes with C symmetry arranged in honeycomb lattice. The defect structure was formed by removing triangle nanoholes from a certain hexagonal unit cell around the topological waveguide. As a result of comparing the coupling efficiency with and without the defect structure through three-dimensional finite-difference time-domain analysis, significant improvement in the vertical coupling efficiency was observed over the entire telecom C band (4460%@1530 nm).
View Article and Find Full Text PDFNonvolatile optical switches are promising components for low-power photonic integrated circuits with multiple functionalities. In this study, we experimentally demonstrate magneto-optical switches integrated with a magnet array. Optical switches in both microring and Mach-Zehnder configurations are fabricated on a high-quality single-crystalline magneto-optical material Ce:YIG.
View Article and Find Full Text PDFA metamaterial is an artificial material designed to control the electric permittivity and magnetic permeability freely beyond naturally existing values. A promising application is a slow-light device realized using a combination of optical waveguides and metamaterials. This paper proposes a method to dynamically control the slow-light effect in a metamaterial-loaded Si waveguide.
View Article and Find Full Text PDFInfrared refractive index is an indispensable parameter for various fields including infrared photonics. To date, critical-angle refractometers, V-block refractometers, and spectroscopic ellipsometry have been commonly used to measure the refractive index. Although every method has an accuracy of four decimal places for the refractive index, a measurable wavelength region is limited up to about 2 µm.
View Article and Find Full Text PDFWe demonstrated a novel slow-light Si-wire waveguide combined with metamaterials, which can be easily integrated with other Si photonics devices. The slow-light effect can be produced simply by placing metamaterials at an appropriate position on a Si-wire waveguide. It was confirmed that the large group index of more than 40 could be obtained because of a steep and discontinuous change of dispersion relation near the resonance frequency of metamaterials.
View Article and Find Full Text PDFWe report the first demonstration of direct modulation of InAs/GaAs quantum dot (QD) lasers grown on on-axis (001) Si substrate. A low threading dislocation density GaAs buffer layer enables us to grow a high quality 5-layered QD active region on on-axis Si substrate. The active layer has p-modulation doped GaAs barrier layers with a hole concentration of 5 × 10 cmto suppress gain saturation.
View Article and Find Full Text PDFWe demonstrate a silicon Mach-Zehnder modulator (MZM) based on hydrogenated amorphous silicon (a-Si:H) strip-loaded waveguides on a silicon on insulator (SOI) platform, which can be fabricated by using a complementary metal-oxide semiconductor (CMOS) compatible process without half etching of the SOI layer. Constructing a vertical p-n junction in a flat etchless SOI layer provides superior controllability and uniformity of carrier profiles. Moreover, the waveguide structure based on a thin a-Si:H strip line can be fabricated easily and precisely.
View Article and Find Full Text PDFToward the realization of ultralow-power-consumption on-chip optical interconnection, two types of membrane-based GaInAs/InP p-i-n photodiodes were fabricated on Si host substrates by using benzocyclobutene bonding. A responsivity of 0.95 A/W was estimated with a conventional waveguide-type photodiode with an ∼30-μm-long absorption region.
View Article and Find Full Text PDFWe analyzed two types of Mach-Zehnder plasmonic modulators on a silicon-on-insulator platform with a different furan-thiophene chromophore electro-optic polymer to compare to other reports. The metal-taper coupling structure and the metal-insulator-metal cross section in our design have been optimized based on the new material parameters. According to the simulation result, a modulator with a slot width of 50 nm and an on-off voltage of Vπ=20 V can be 21 μm long, leading to a total modulator loss of 15 dB, which is comparable to previously reported devices.
View Article and Find Full Text PDFWe fabricated a magneto-optical (MO) isolator with a TE mode nonreciprocal phase shift. The isolator is based on a Mach-Zehnder interferometer composed of 3-dB directional couplers, a reciprocal phase shifter, and a nonreciprocal phase shifter. To realize TE mode operation in the optical isolator, we designed a novel waveguide structure composed of a hydrogenated amorphous silicon waveguide with an asymmetric MO garnet lateral clad on a garnet substrate.
View Article and Find Full Text PDFLow-power consumption directly-modulated lasers are a key device for on-chip optical interconnection. We fabricated a GaInAsP/InP membrane DFB laser that exhibited a low-threshold current of 0.21 mA and single-mode operation with a sub-mode suppression ratio of 47 dB at a bias current of 2 mA.
View Article and Find Full Text PDFThe direct modulation characteristics of a membrane distributed feedback (DFB) laser on a silicon substrate were investigated. Enhancement of the optical confinement factor in the membrane structure facilitates the fabrication of a strongly index-coupled (κ(I) = 1500 cm(-1)) DFB laser with the cavity length of 80 µm and a threshold current of 270 µA. Small-signal modulation measurements yielded a -3dB bandwidth of 9.
View Article and Find Full Text PDFPhotonic wire bonding (PWB) was used to achieve flexible chip-scale optical interconnection as a kind of 3D-freeform polymer waveguide based on the two-photon polymerization of SU-8. First, the fabrication conditions of PWB were determined for the two-photon absorption process, and the coupling structure between PWB and III-V optical components was numerically simulated in order to obtain high coupling efficiency. Then, using PWB, chip-to-chip optical transmission was realized between laser and detector chips located on a common Si substrate.
View Article and Find Full Text PDFWe fabricated GaInAsP/InP waveguide-integrated lateral-current-injection (LCI) membrane distributed feedback (DFB) lasers on a Si substrate by using benzocyclobutene (BCB) adhesive bonding for on-chip optical interconnection. The integration ofa butt-jointed built-in (BJB) GaInAsP passive waveguide was performed by organometallic vapor-phase epitaxy (OMVPE).By introducing a strongly index-coupled DFB structure with a 50-µm-long cavity, a threshold current of 230 µA was achieved for a stripe width of 0.
View Article and Find Full Text PDFMetamaterials are artificially structured materials that can produce innovative optical functionalities such as negative refractive index, invisibility cloaking, and super-resolution imaging. Combining metamaterials with semiconductors enables us to develop novel optoelectronic devices based on the new concept of operation. Here we report the first experimental demonstration of a permeability-controlled waveguide optical modulator consisting of an InGaAsP/InP Mach-Zehnder interferometer with 'tri-gate' metamaterial attached on its arms.
View Article and Find Full Text PDFFor silicon wire based ring resonator biosensors, we investigate the simultaneous retrieval of changes in the fluidic refractive index ∆n(c) and surface adsorbed molecular film thickness ∆d(F). This can be achieved by monitoring the resonance shifts of the sensors operating in the TE and TM polarizations at the same time. Although this procedure is straightforward in principle, significant retrieval errors can be introduced due to deviations in the sensor waveguide cross-sections from their nominal values in the range commonly encountered for silicon photonic wire devices.
View Article and Find Full Text PDFAn InP-based Mach-Zehnder interferometer combined with a metamaterial layer consisting of a split-ring resonator array was constructed to measure the complex permeability of the metamaterial. At a wavelength of 1.5 μm, the metamaterial showed non-unity relative permeability induced by magnetic interaction with propagating light in the device.
View Article and Find Full Text PDF