Publications by authors named "Nobuhiko Nakashima"

The complete genome sequences of two new iflaviruses (genus Iflavirus, family Iflaviridae) were determined. These viral sequences were first identified in RNA-seq contig sequences of Nilaparvata lugens in two distinct colonies: Izumo and Kagoshima. The accuracy of the contig sequences of the two viruses was verified by restriction enzyme digestion of RT-PCR products from viruliferous insects.

View Article and Find Full Text PDF

A previously unknown iflavirus has been identified in a laboratory colony of the brown planthopper, Nilaparvata lugens. The iflavirus-like sequence was first identified in contig sequences obtained from transcriptome sequencing (RNA-seq) of the brown planthopper. The complete viral genome was resequenced using the Sanger method.

View Article and Find Full Text PDF

The complete genome of pepper vein yellows virus (PeVYV) was sequenced using random amplification of RNA samples isolated from vector insects (Aphis gossypii) that had been given access to PeVYV-infected plants. The PeVYV genome consisted of 6244 nucleotides and had a genomic organization characteristic of members of the genus Polerovirus. PeVYV had highest amino acid sequence identities in ORF0 to ORF3 (75.

View Article and Find Full Text PDF

Some viruses exploit internal initiation for their propagation in the host cell. This type of initiation is facilitated by structured elements (internal ribosome entry site, IRES) upstream of the initiator AUG and requires only a reduced number of canonical initiation factors. An important example are IRES of the virus family Dicistroviridae that bind to the inter-subunit side of the small ribosomal 40S subunit and lead to the formation of elongation-competent 80S ribosomes without the help of any initiation factor.

View Article and Find Full Text PDF

The brown planthopper (BPH), Nilaparvata lugens, attacks rice plants and feeds on their phloem sap, which contains large amounts of sugars. The main sugar component of phloem sap is sucrose, a disaccharide composed of glucose and fructose. Sugars appear to be incorporated into the planthopper body by sugar transporters in the midgut.

View Article and Find Full Text PDF

Dicistroviruses have motifs for picornavirus 2C, 3C, and 3D proteins in their nonstructural polyprotein C-terminal region. The proteins from the nonstructural, N-terminal region of the polyprotein remain to be characterized. We have identified 3C-mediated cleavage sites in the N-terminal region of the nonstructural polyprotein of the dicistrovirus Plautia stali intestine virus (PSIV).

View Article and Find Full Text PDF

Plautia stali intestine virus (PSIV) is a member of the family Dicistroviridae. Dicistroviruses, like picornaviruses, are thought to encode a 3C-like protease; however, the cleavage sites of dicistroviral nonstructural polyprotein precursors are unknown except for those in genome-linked virus protein (VPg) regions. We expressed part of the PSIV polyprotein in Escherichia coli and detected autoprocessed viral proteins.

View Article and Find Full Text PDF

The family Dicistroviridae is composed of positive-stranded RNA viruses which have monopartite genomes. These viruses carry genome-linked virus proteins (VPg) and poly (A) tails. The 5' untranslated region (UTR) is approximately 500 nucleotides and contains an internal ribosome entry site (IRES).

View Article and Find Full Text PDF

Despite the apparent natural grouping of "picorna-like" viruses, the taxonomical significance of this putative "supergroup" was never addressed adequately. We recently proposed to the ICTV that an order should be created and named Picornavirales, to include viruses infecting eukaryotes that share similar properties: (i) a positive-sense RNA genome, usually with a 5'-bound VPg and 3'-polyadenylated, (ii) genome translation into autoproteolytically processed polyprotein(s), (iii) capsid proteins organized in a module containing three related jelly-roll domains which form small icosahedral, non-enveloped particles with a pseudo-T = 3 symmetry, and (iv) a three-domain module containing a superfamily III helicase, a (cysteine) proteinase with a chymotrypsin-like fold and an RNA-dependent RNA polymerase. According to the above criteria, the order Picornavirales includes the families Picornaviridae, Comoviridae, Dicistroviridae, Marnaviridae, Sequiviridae and the unassigned genera Cheravirus, Iflavirus and Sadwavirus.

View Article and Find Full Text PDF

The intergenic region-internal ribosome entry site (IGR-IRES) of dicistroviruses binds to 40S ribosomal subunits in the absence of eukaryotic initiation factors (eIFs). Although the conserved loop sequences in dicistroviral IGR-IRES elements are protected from chemical modifications in the presence of the 40S subunit, molecular components in the 40S subunit, which interacts with the loop sequences in the IRES, have not been identified. Here, a chemical crosslinking study using 4-thiouridine-labeled IGR-IRES revealed interactions of the IGR-IRES with several 40S proteins but not with the 18S rRNA.

View Article and Find Full Text PDF

Eukaryotic ribosomes directly bind to the intergenic region-internal ribosome entry site (IGR-IRES) of Plautia stali intestine virus (PSIV) and initiate translation without either initiation factors or initiator Met-tRNA. We have investigated the mode of binding of the first aminoacyl-tRNA in translation initiation mediated by the IGR-IRES. Binding ability of aminoacyl-tRNA to the first codon within the IGR-IRES/80 S ribosome complex was very low in the presence of eukaryotic elongation factor 1A (eEF1A) alone but markedly enhanced by the translocase eEF2.

View Article and Find Full Text PDF

The RNA genome of Plautia stali intestine virus (PSIV; Cripavirus, Dicistroviridae) contains two open reading frames, the first of which is preceded by a 570 nt untranslated region (5' UTR). The 5' UTR was confirmed to be an internal ribosome entry site (IRES) using an insect cell lysate translation system: translation of a second cistron increased 14-fold in the presence of the 5' UTR and a cap analogue did not inhibit translation of the second cistron. Deletion analysis showed that 349 bases corresponding to nt 225-573 in the PSIV genome were necessary for internal initiation.

View Article and Find Full Text PDF

N-terminal Edman sequencing of the genome-linked viral protein (VPg) of Plautia stali intestine virus (PSIV, Dicistroviridae) detected heterologus residues. The VPg sequence determined was found to be triplicated in the nonstructural protein precursor. Multiple VPg-like sequences were also found in 10 of the 12 dicistroviruses with a maximum of six copies in Solenopsis invicta virus-1.

View Article and Find Full Text PDF

Two distinct spherical virus-like particles were purified from the brown planthopper, Nilaparvata lugens. One was a geographical isolate of Himetobi P virus (Cripavirus, Dicistroviridae). The other was 30 nm in diameter and contained positive-stranded RNA.

View Article and Find Full Text PDF

An amino-terminal methionine corresponding to a recombinant AUG initiation codon sometimes affects the functions of proteins. To test the performance of translation mediated by a dicistroviral internal ribosome entry site (IRES), which initiates protein synthesis with elongator tRNAs, we optimized the conditions for cell-free translation. Although the IRES is 188 nucleotides long, a further 50 nucleotides of the upstream sequence stabilized translation efficiency.

View Article and Find Full Text PDF

The intergenic region (IGR) located upstream of the capsid protein gene in dicistroviruses contains an internal ribosome entry site (IRES). Translation initiation mediated by the IRES does not require initiator methionine tRNA. Comparison of the IGRs among dicistroviruses suggested that Taura syndrome virus (TSV) and acute bee paralysis virus have an extra side stem loop in the predicted IRES.

View Article and Find Full Text PDF

The positive-stranded RNA genome of Plautia stali intestine virus (PSIV) has an internal ribosome entry site (IRES) in an intergenic region (IGR). The IGR-IRES of PSIV initiates translation of the capsid protein by using CAA, the codon for glutamine. It was previously reported (J.

View Article and Find Full Text PDF

Plautia stali intestine virus (PSIV) has an internal ribosome entry site (IRES) at the intergenic region of the genome. The PSIV IRES initiates translation with glutamine rather than the universal methionine. To analyze the mechanism of IRES-mediated initiation, binding of IRES RNA to salt-washed ribosomes in the absence of translation factors was studied.

View Article and Find Full Text PDF