By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.
View Article and Find Full Text PDFLaser wakefield acceleration, as an advanced accelerator concept, has attracted great attentions for its ultrahigh acceleration gradient and the capability to produce high brightness electron bunches. The three-dimensional (3D) density serves as an evaluation metric for the particle bunch quality and is intrinsically related to the applications of an accelerator. Despite its significance, this parameter has not been experimentally measured in the investigation of laser wakefield acceleration.
View Article and Find Full Text PDFThe sharp density down-ramp injection (shock injection) mechanism produces the quasi-monoenergetic electron beam with a bunch duration of tens of femtoseconds via laser wakefield acceleration. The stability of the accelerated electron beam strongly depends on the stability of the laser beam and the shock structure produced by the supersonic gas nozzle. In this paper, we report the study of a newly designed modular supersonic nozzle with a flexible stilling chamber and a converging-diverging structure.
View Article and Find Full Text PDFLaser wakefield acceleration (LWFA) continues to grow and awaken interest worldwide, especially as in various applications it approaches performance comparable to classical accelerators. However, numerous challenges still exist until this can be a reality. The complex non-linear nature of the process of interaction between the laser and the induced plasma remains an obstacle to the widespread LWFA use as stable and reliable particle sources.
View Article and Find Full Text PDFOver the past century, understanding the nature of shock compression of condensed matter has been a major topic. About 20 years ago, a femtosecond laser emerged as a new shock-driver. Unlike conventional shock waves, a femtosecond laser-driven shock wave creates unique microstructures in materials.
View Article and Find Full Text PDFMulti-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect.
View Article and Find Full Text PDFA novel method to fabricate undulator magnets of a-few-millimetre-period length is being explored. Plate-type magnets, 100 mm-long with 4 mm-period length, have been successfully fabricated. They produce an undulator field of approximately 3 kG at a gap of 1.
View Article and Find Full Text PDFJ-KAREN-P is a high-power laser facility aiming at the highest beam quality and irradiance for performing state-of-the art experiments at the frontier of modern science. Here we approached the physical limits of the beam quality: diffraction limit of the focal spot and bandwidth limit of the pulse shape, removing the chromatic aberration, angular chirp, wavefront and spectral phase distortions. We performed accurate measurements of the spot and peak fluence after an f/1.
View Article and Find Full Text PDFInteraction of relativistically intense axisymmetrically polarized (radially or azimuthally polarized) laser pulses (RIAPLP) with underdense plasma is shown experimentally and theoretically to be essentially different from the interaction of conventional Gaussian pulses. The difference is clearly observed in distinct spectra of the side-scattered laser light for the RIAPLP and Gaussian pulses, as well as in the appearance of a spatially localized strong side emission of second harmonic of the laser pulse in the case of RIAPLP. According to our analysis based on three-dimensional particle-in-cell simulations, this is a result of instability in the propagation of RIAPLP in uniform underdense plasma.
View Article and Find Full Text PDF