Context: Causative factors for ectopic ossifications in X-linked hypophosphatemia (XLH) remain to be elucidated.
Objective: This work aimed to investigate the genotype-phenotype correlations between the phosphate-regulating endopeptidase homologue, X-linked gene () and ectopic ossifications in XLH.
Methods: Biochemical data, spinal computed tomography scans, and x-rays of hip/knee joints were retrospectively reviewed.
Atrial fibrillation (AF) is the most common cardiac arrhythmia observed in the elderly. Its prevalence rises with age, particularly in individuals over 80 years old. While catheter ablation has emerged as a first line therapy for the patients with symptomatic AF, evidence on its application in elderly patients remains controversial.
View Article and Find Full Text PDFX-linked hypophosphatemia (XLH) is a genetic disease that results in excessive FGF23, chronic hypophosphatemia, and musculoskeletal abnormalities, with affected patients experiencing symptoms such as bone pain, bone deformity, fracture, and pseudofracture. Burosumab is a fully human monoclonal antibody that binds to FGF23, improving lowered serum 1,25(OH)D and phosphate levels in patients with XLH. There are insufficient data on the use of burosumab, its safety, and the outcomes of treated patients in a real-world setting.
View Article and Find Full Text PDFBackground: In patients with chronic kidney disease (CKD), fibroblast growth factor (FGF)-23 is suspected to cause death or cardiovascular disease by inducing left ventricular hypertrophy (LVH).
Objectives: This study aims to quantify the mediational effect of LVH in the hypothetical causal pathway from FGF-23 to long-term adverse outcomes.
Methods: From 3,939 adults with CKD stages 2 to 4 enrolled in the CRIC (Chronic Renal Insufficiency Cohort) study, 2,368 participants with available data of FGF-23, left ventricular mass index at 1 year, and covariates were included.
Chitosan is a product of deacetylated chitin and a natural polymer that is attractive as a functional and biocompatible material in the pursuit of alternative materials to synthetic plastics for a sustainable society. Although hierarchical architectures, from precise molecular structures to nanofibers and twisted structures, have been clarified, the expansion of the anisotropic microstructures of chitosan into millimeter-scale materials is in the process of development. In this study, a chitosan network was reconstructed from an aqueous solution by using the meniscus splitting method to form a three-dimensionally ordered microstructure.
View Article and Find Full Text PDFBackground: While clinical features of KCNJ5-mutated aldosterone-producing adenoma (APA) have been reported, evidence of its clinical outcomes is lacking. We aimed to synthesize available literature about the associations between KCNJ5 mutation with cardiovascular and metabolic outcomes among patients with APA.
Methods: In this systematic review of observational studies, MEDLINE and Embase were searched through August 2022.
Introduction: Autosomal dominant hypophosphatemic rickets (ADHR) is caused by pathogenic variants in the fibroblast growth factor 23 (FGF23) gene, which plays a key role in the regulation of phosphorus metabolism. FGF23 has the RXXR motif recognized by furin, leading to cleavage between R179 and S180 and thereby inactivating the protein's function. Previously reported variants in FGF23 causing ADHR occurred only affecting residues R176 or R179, which are located in the RXXR motif, leading to impaired cleavage.
View Article and Find Full Text PDFEndocrinol Metab (Seoul)
April 2024
Fibroblast growth factor 23 (FGF23) is a pivotal humoral factor for the regulation of serum phosphate levels and was first identified in patients with autosomal dominant hypophosphatemic rickets and tumor-induced osteomalacia (TIO), the most common form of acquired FGF23-related hypophosphatemic rickets/osteomalacia (FGF23rHR). After the identification of FGF23, many other inherited and acquired forms of FGF23rHR were reported. In this review article, the detailed features of each acquired FGF23rHR are discussed, including TIO, ectopic FGF23 syndrome with malignancy, fibrous dysplasia/McCune-Albright syndrome, Schimmelpenning-Feuerstein-Mims syndrome/cutaneous skeletal hypophosphatemia syndrome, intravenous iron preparation-induced FGF23rHR, alcohol consumption-induced FGF23rHR, and post-kidney transplantation hypophosphatemia.
View Article and Find Full Text PDFCongenital fibroblast growth factor 23 (FGF23)-related hypophosphatemic rickets/osteomalacia is a rare bone metabolism disorder characterized by hypophosphatemia and caused by genetic abnormalities that result in excessive secretion of FGF23. Hyp mice are a model of X-linked hypophosphatemia (XLH) caused by deletion of the PHEX gene and excessive production of FGF23. The purpose of this study was to investigate the potential of TM5614 as a therapeutic agent for the treatment of congenital FGF23-related hypophosphatemic rickets and osteomalacia in humans by administering TM5614 to Hyp mice and examining its curative effect on hypophosphatemia.
View Article and Find Full Text PDFAging presents fundamental health concerns worldwide; however, mechanisms underlying how aging is regulated are not fully understood. Here, we show that cartilage regulates aging by controlling phosphate metabolism via ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). We newly established an Enpp1 reporter mouse, in which an EGFP-luciferase sequence was knocked-in at the Enpp1 gene start codon (Enpp1/EGFP-luciferase), enabling detection of Enpp1 expression in cartilage tissues of resultant mice.
View Article and Find Full Text PDFIntroduction: Although catheter ablation (CA) of tachycardia-bradycardia syndrome (TBS) in patients with atrial fibrillation (AF) is considered to be an effective treatment strategy, pacemaker implantations (PMIs) are often required even after a successful CA. This study aimed to elucidate the clinical predictors of a PMI after CA.
Methods: From 2011 to 2020, 103 consecutive patients diagnosed with TBS were retrospectively enrolled in the study.
The vast majority of transcribed RNAs are noncoding RNAs. Among noncoding RNAs, long noncoding RNAs (lncRNAs), which contain hundreds to thousands of bases, have received attention in many fields. The vast majority of the constituent cells in bone tissue are osteocytes, but their regulatory mechanisms are incompletely understood.
View Article and Find Full Text PDFCurr Osteoporos Rep
October 2023
Purpose Of Review: The study aims to provide updated information on the genetic factors associated with the diagnoses 'Diffuse Idiopathic Skeletal Hyperostosis' (DISH), 'Ossification of the Posterior Longitudinal Ligament' (OPLL), and in patients with spinal ligament ossification.
Recent Findings: Recent studies have advanced our knowledge of genetic factors associated with DISH, OPLL, and other spinal ossification (ossification of the anterior longitudinal ligament [OALL] and the yellow ligament [OYL]). Several case studies of individuals afflicted with monogenic disorders, such as X-linked hypophosphatemia (XLH), demonstrate the strong association of fibroblast growth factor 23-related hypophosphatemia with OPLL, suggesting that pathogenic variants in PHEX, ENPP1, and DMP1 are associated with FGF23-phosphate wasting phenotype and strong genetic factors placing patients at risk for OPLL.
Although there are a few case reports of patients with small cell lung cancer developing hypophosphatemia, detailed information on this condition is scarce. A 52-year-old patient with advanced stage small cell lung cancer developed hypophosphatemia (1.1 mg/dL) during chemotherapy.
View Article and Find Full Text PDF