Publications by authors named "Noboru H Komiyama"

Article Synopsis
  • - Increased lactate levels from glycolysis are being studied as potential markers for metabolic changes in neurons, linked to a drop in brain pH, which has been associated with various neuropsychiatric disorders like schizophrenia and autism.
  • - Research shows that these pH and lactate changes are common across different animal models, including those for depression, epilepsy, and Alzheimer's disease, though findings vary, particularly within the autism spectrum.
  • - A large-scale analysis indicated that higher lactate levels correlate with worse working memory performance, suggesting that altered brain chemistry might reflect underlying conditions across multiple disorders.
View Article and Find Full Text PDF

Neurodevelopmental disorders of genetic origin delay the acquisition of normal abilities and cause disabling phenotypes. Nevertheless, spontaneous attenuation and even complete amelioration of symptoms in early childhood and adolescence can occur in many disorders, suggesting that brain circuits possess an intrinsic capacity to overcome the deficits arising from some germline mutations. We examined the molecular composition of almost a trillion excitatory synapses on a brain-wide scale between birth and adulthood in mice carrying a mutation in the homeobox transcription factor Pax6, a neurodevelopmental disorder model.

View Article and Find Full Text PDF
Article Synopsis
  • - Mnk1/2 proteins play a key role in regulating brain functions like memory and synaptic plasticity, primarily through the phosphorylation of eIF4E, although their deletion causes negative effects while deletion of phosphorylated eIF4E does not.
  • - Research shows that Mnk1/2 have other important functions beyond eIF4E, as evidenced by only a small overlap in the proteins they regulate, and they were found to interact with a protein called Syngap1, linked to autism.
  • - Knockdown of Syngap1 reversed memory issues in Mnk-deficient mice, indicating that the relationship between Mnk1 and Syngap1 is significant in regulating memory and behaviors associated with autism.
View Article and Find Full Text PDF
Article Synopsis
  • The study examines the lifetime of PSD95 protein in synapses, crucial for signaling, maintenance, and memory, creating the Protein Lifetime Synaptome Atlas.
  • PSD95 lifetimes vary significantly, with short lifetimes seen in young mice and areas linked to innate behaviors, while long lifetimes are found in regions related to memory, like the cortex and CA1.
  • Interestingly, protein lifetime increases in mouse models of autism and schizophrenia, highlighting its role in synapse diversity and implications for brain development, aging, and neurological disorders.
View Article and Find Full Text PDF
Article Synopsis
  • ALS is a deadly neurodegenerative disease that involves abnormal changes in synapses and astrocytes, with the hypothesis that specialized tripartite synapses may be central to its pathology.
  • Research using microscopy in ALS model mice and human spinal tissue shows significant synaptic changes early in disease progression, particularly the loss of complex postsynaptic structures and tripartite synapses.
  • The findings indicate that the selective loss of tripartite synapses is a critical feature of ALS, suggesting a new potential target for understanding and treating the disease.
View Article and Find Full Text PDF

The postsynaptic terminal of vertebrate excitatory synapses contains a highly conserved multiprotein complex that comprises neurotransmitter receptors, cell-adhesion molecules, scaffold proteins and enzymes, which are essential for brain signalling and plasticity underlying behaviour. Increasingly, mutations in genes that encode postsynaptic proteins belonging to the PSD-95 protein complex, continue to be identified in neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability and epilepsy. These disorders are highly heterogeneous, sharing genetic aetiology and comorbid cognitive and behavioural symptoms.

View Article and Find Full Text PDF

Synapses connect neurons together to form the circuits of the brain, and their molecular composition controls innate and learned behavior. We analyzed the molecular and morphological diversity of 5 billion excitatory synapses at single-synapse resolution across the mouse brain from birth to old age. A continuum of changes alters synapse composition in all brain regions across the life span.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have uncovered significant molecular complexity in synapses, identifying over 1,000 proteins within the synapse proteome, but the diversity of synapses across the brain is still not well understood due to current research limitations.
  • This study introduces an efficient method for purifying synaptic protein complexes by tagging PSD95, allowing for visualization in specific cell types and showcasing differences in PSD95 complexes between specific neurons and diverse tissues.
  • The findings suggest that synaptic protein interactions vary by brain region and cell type, providing new tools for further investigation into synapse diversity and potential implications for understanding psychiatric and neurological diseases.
View Article and Find Full Text PDF

Aims: Synaptic Ras GTPase-activating protein 1 (SYNGAP1) regulates synaptic plasticity through AMPA receptor trafficking. SYNGAP1 mutations have been found in human patients with intellectual disability (ID) and autism spectrum disorder (ASD). Almost every individual with SYNGAP1-related ID develops epilepsy, and approximately 50% have ASD.

View Article and Find Full Text PDF

Dendritic spines are the postsynaptic sites that receive most of the excitatory synaptic inputs, and thus provide the structural basis for synaptic function. Here, we describe an accurate method for measurement and analysis of spine morphology based on structured illumination microscopy (SIM) and computational geometry in cultured neurons. Surface mesh data converted from SIM images were comparable to data reconstructed from electron microscopic images.

View Article and Find Full Text PDF

The GluN2 subtype (2A versus 2B) determines biophysical properties and signaling of forebrain NMDA receptors (NMDARs). During development, GluN2A becomes incorporated into previously GluN2B-dominated NMDARs. This "switch" is proposed to be driven by distinct features of GluN2 cytoplasmic C-terminal domains (CTDs), including a unique CaMKII interaction site in GluN2B that drives removal from the synapse.

View Article and Find Full Text PDF

Synapses are found in vast numbers in the brain and contain complex proteomes. We developed genetic labeling and imaging methods to examine synaptic proteins in individual excitatory synapses across all regions of the mouse brain. Synapse catalogs were generated from the molecular and morphological features of a billion synapses.

View Article and Find Full Text PDF

Background: Synaptic Ras-GTPase-activating protein 1 (SYNGAP1) is an abundant brain-specific protein localized at the postsynaptic density of mammalian excitatory synapses. SYNGAP1 functions as a crucial regulator of downstream intracellular signaling triggered by N-methyl-d-aspartate receptor activation. One of the most important signaling pathways regulated by SYNGAP1 is the Ras-Raf-MEK-ERK pathway.

View Article and Find Full Text PDF

PSD-95 is one of the most abundant proteins of the postsynaptic density of excitatory synapses. It functions as the backbone of protein supercomplexes that mediate signalling between membrane glutamate receptors and intracellular pathways. Homozygous deletion of the Dlg4 gene encoding PSD-95 was previously found to cause a profound impairment in operant and Pavlovian conditioning in Dlg4 mice studied in touch screen chambers that precluded evaluation of PSD-95's role in shaping more subtle forms of learning and memory.

View Article and Find Full Text PDF

Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP) tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice.

View Article and Find Full Text PDF

Aberrant NMDA receptor (NMDAR) activity contributes to several neurological disorders, but direct antagonism is poorly tolerated therapeutically. The GluN2B cytoplasmic C-terminal domain (CTD) represents an alternative therapeutic target since it potentiates excitotoxic signaling. The key GluN2B CTD-centred event in excitotoxicity is proposed to involve its phosphorylation at Ser-1303 by Dapk1, that is blocked by a neuroprotective cell-permeable peptide mimetic of the region.

View Article and Find Full Text PDF

PSD95 is an abundant postsynaptic scaffold protein in glutamatergic synapses that assembles into supercomplexes composed of over 80 proteins including neurotransmitter receptors, ion channels and adhesion proteins. How these diverse constituents are organized into PSD95 supercomplexes in vivo is poorly understood. Here, we dissected the supercomplexes in mice combining endogenous gene-tagging, targeted mutations and quantitative biochemical assays.

View Article and Find Full Text PDF

How neuronal proteomes self-organize is poorly understood because of their inherent molecular and cellular complexity. Here, focusing on mammalian synapses we use blue-native PAGE and 'gene-tagging' of GluN1 to report the first biochemical purification of endogenous NMDA receptors (NMDARs) directly from adult mouse brain. We show that NMDARs partition between two discrete populations of receptor complexes and ∼1.

View Article and Find Full Text PDF

The molecular features of synapses in the hippocampus underpin current models of learning and cognition. Although synapse ultra-structural diversity has been described in the canonical hippocampal circuitry, our knowledge of sub-synaptic organisation of synaptic molecules remains largely unknown. To address this, mice were engineered to express Post Synaptic Density 95 protein (PSD95) fused to either eGFP or mEos2 and imaged with two orthogonal super-resolution methods: gated stimulated emission depletion (g-STED) microscopy and photoactivated localisation microscopy (PALM).

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates whether different genetic causes of intellectual disability (ID) and autism spectrum disorders (ASDs) share similar cellular pathways by analyzing two specific animal models (Syngap(+/-) and Fmr1(-/y) mice).
  • The findings reveal that both mouse models exhibit common synaptic dysfunctions, including increased protein synthesis and alterations in dendritic spine morphology, which suggest potential shared biochemical mechanisms leading to these disorders.
  • The research indicates that treatments aimed at FMRP-related conditions, like fragile X syndrome, may also provide therapeutic benefits for individuals with SYNGAP1 haploinsufficiency, potentially improving outcomes for both conditions.
View Article and Find Full Text PDF

The function of the nervous system depends on the integrity of synapses and the patterning of electrical activity in brain circuits. The rapid advances in genome sequencing reveal a large number of mutations disrupting synaptic proteins, which potentially result in diseases known as synaptopathies. However, it is also evident that every normal individual carries hundreds of potentially damaging mutations.

View Article and Find Full Text PDF

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created two mouse models: transgenic mice with increased MPDZ expression and knockout heterozygote mice with reduced expression, both of which showed different responses to ethanol withdrawal compared to regular mice.
  • * The findings indicate that lower levels of MPDZ are associated with more severe ethanol withdrawal and reduced ethanol consumption, suggesting that MPDZ plays a significant role in how organisms respond to alcohol.
View Article and Find Full Text PDF

The CYFIP1/SRA1 gene is located in a chromosomal region linked to various neurological disorders, including intellectual disability, autism, and schizophrenia. CYFIP1 plays a dual role in two apparently unrelated processes, inhibiting local protein synthesis and favoring actin remodeling. Here, we show that brain-derived neurotrophic factor (BDNF)-driven synaptic signaling releases CYFIP1 from the translational inhibitory complex, triggering translation of target mRNAs and shifting CYFIP1 into the WAVE regulatory complex.

View Article and Find Full Text PDF