Publications by authors named "Noam Shahar"

The integration of genes into the nuclear genome of is mediated by Non-Homologous-End-Joining, thus resulting in unpredicted insertion locations. This phenomenon defines 'the position-effect', which is used to explain the variation of expression levels between different clones transformed with the same DNA fragment. Likewise, nuclear transgenes often undergo epigenetic silencing that reduces their expression; hence, nuclear transformations require high-throughput screening methods to isolate clones that express the foreign gene at a desirable level.

View Article and Find Full Text PDF

Chloroplasts originated from an ancient cyanobacterium and still harbor a bacterial-like genome. However, the centrality of Shine-Dalgarno ribosome binding, which predominantly regulates proteobacterial translation initiation, is significantly decreased in chloroplasts. As plastid ribosomal RNA anti-Shine-Dalgarno elements are similar to their bacterial counterparts, these sites alone cannot explain this decline.

View Article and Find Full Text PDF

While bacterial operons have been thoroughly studied, few analyses of chloroplast operons exist, limiting the ability to study fundamental elements of these structures and utilize them for synthetic biology. Here, we describe the creation of a plastome-specific operon database (link provided below) achieved by combining experimental tools and predictive modeling. Using a Reverse-Transcription-PCR based method and published data, we determined the transcription-state of 213 gene pairs from four plastomes of evolutionary distinct organisms.

View Article and Find Full Text PDF

Motivation: Regulation of the amount of protein that is synthesized from genes has proved to be a serious challenge in terms of analysis and prediction, and in terms of engineering and optimization, due to the large diversity in expression machinery across species.

Results: To address this challenge, we developed a methodology and a software tool (ChimeraUGEM) for predicting gene expression as well as adapting the coding sequence of a target gene to any host organism. We demonstrate these methods by predicting protein levels in seven organisms, in seven human tissues, and by increasing in vivo the expression of a synthetic gene up to 26-fold in the single-cell green alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Many microbiological assays include colonies that produce a luminescent or fluorescent (here generalized as "luminescent") signal, often in the form of luminescent halos around the colonies. These signals are used as reporters for a trait of interest; therefore, exact measurements of the luminescence are often desired. However, there is currently a lack of high-throughput methods for analyzing these assays, as common automatic image analysis tools are unsuitable for identifying these halos in the presence of the inherent biological noise.

View Article and Find Full Text PDF