Publications by authors named "Noam Jacob"

Colonic leiomyoma is extremely rare and is endoscopically indistinguishable from gastrointestinal stromal tumor. We present a case of colonic leiomyoma disguised as a pedunculated colonic polyp in a 62-year-old male who underwent surveillance colonoscopy.

View Article and Find Full Text PDF

Fecal microbiota transplantation has been vital for establishing whether host phenotypes can be conferred through the microbiome. However, whether the existing microbial ecology along the mouse gastrointestinal tract can be recapitulated in germ-free mice colonized with stool remains unknown. We first identified microbes and their predicted functions specific to each of six intestinal regions in three cohorts of specific pathogen-free mice spanning two facilities.

View Article and Find Full Text PDF

Background & Aims: Tumor necrosis factor (TNF) superfamily member tumor necrosis factor-like protein 1A (TL1A) has been associated with the susceptibility and severity of inflammatory bowel diseases. However, the function of the tumor necrosis factor-like protein 1A and its receptor death receptor 3 (DR3) in the development of intestinal inflammation is incompletely understood. We investigated the role of DR3 expressed by intestinal epithelial cells (IECs) during intestinal homeostasis, tissue injury, and regeneration.

View Article and Find Full Text PDF

Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease, modulating the location and severity of inflammation and fibrosis. TL1A expression is increased in inflamed mucosa and associated with fibrostenosing Crohn's disease. Tl1a-overexpression in mice causes spontaneous ileitis, and exacerbates induced proximal colitis and fibrosis.

View Article and Find Full Text PDF

Background: Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a group of cytoplasmic sensors that survey danger signals released by invading pathogens or damaged tissue. Mutations in the NLRP subfamily affect pro-inflammatory mediators and cause nonspecific systemic symptoms.

Aims: We sought to identify a potential genetic etiology of an inflammatory syndrome in a patient that presented with an atypical multisystem illness with carcinoid syndrome as well as atopic and autoimmune features.

View Article and Find Full Text PDF

Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease (IBD), modulating the location and severity of intestinal inflammation and fibrosis. TL1A expression is increased in inflamed gut mucosa and associated with fibrostenosing Crohn's disease. Tl1a-overexpression in mice lead to spontaneous ileitis, and exacerbated induced proximal colitis and fibrosis.

View Article and Find Full Text PDF

The frequency of fibrosing Crohn's disease (CD) is significant, with approximately 40% of CD patients with ileal disease developing clinically apparent strictures throughout their lifetime. Although strictures may be subdivided into fibrotic, inflammatory, or mixed forms, despite immunosuppressive therapy in CD patients in the form of steroids or immunomodulators, the frequency of fibrostenosing complications has still remained significant. A vast number of genetic and epigenetic variables are thought to contribute to fibrostenosing disease, including those that affect cytokine biology, and therefore highlight the complexity of disease, but also shed light on targetable pathways.

View Article and Find Full Text PDF

Objective: To determine the necessity for any individual BAFF receptor in the development of systemic lupus erythematosus (SLE).

Methods: Bcma-, Taci-, and Br3-null mutations were introgressed into NZM 2328 mice. NZM.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is the most common rheumatic disease. The genetic basis of RA is supported through the identification of more than 30 susceptibility genetic variants. Each of these genes individually makes only a slight contribution to the risk of disease.

View Article and Find Full Text PDF

Objective: To determine the role of APRIL in the development of systemic lupus erythematosus (SLE) in mice.

Methods: Wild-type (WT) NZM 2328, NZM. April(-/-) , NZM.

View Article and Find Full Text PDF

The pathogenesis of systemic lupus erythematosus (SLE) is complex, and the resulting disease manifestations are heterogeneous. Cytokine dysregulation is pervasive, and their protein and gene expression profiles may serve as markers of disease activity and severity. Importantly, biologic agents that target specific cytokines may represent novel therapies for SLE.

View Article and Find Full Text PDF

IFN-α is a potent activator of innate and adaptive immunity, and its administration to preautoimmune (NZB×NZW)F1 mice promotes virulent systemic lupus erythematosus (SLE) disease. Given the known contributions of B cells and BAFF to SLE, we evaluated the ability of IFN-α administration to induce disease in wild-type (WT), B cell-deficient, and BAFF-deficient NZM 2328 mice. Whereas WT mice rapidly developed proliferative glomerulonephritis, marked proteinuria, and increased mortality in response to IFN-α administration, B cell-deficient mice developed neither renal pathology nor clinical disease.

View Article and Find Full Text PDF

Engagement of the low-affinity Ab receptor FcγRIIb downregulates B cell activation, and its dysfunction is associated with autoimmunity in mice and humans. We engineered the Fc domain of an anti-human CD19 Ab to bind FcγRIIb with high affinity, promoting the coengagement of FcγRIIb with the BCR complex. This Ab (XmAb5871) stimulated phosphorylation of the ITIM of FcγRIIb and suppressed BCR-induced calcium mobilization, proliferation, and costimulatory molecule expression of human B cells from healthy volunteers and systemic lupus erythematosus (SLE) patients, as well as B cell proliferation induced by LPS, IL-4, or BAFF.

View Article and Find Full Text PDF

Objective: To determine whether overexpression of BAFF can promote systemic lupus erythematosus (SLE)-like autoimmunity in mice that are otherwise autoimmune-resistant.

Methods: We used class II major histocompatibility complex (MHC)-deficient C57BL/6 (B6) mice as a model of resistance to SLE and Sles1-bearing B6 mice as a model of resistance to the autoantibody-promoting capacity of the Sle1 region. We generated BAFF-transgenic (Tg) counterparts to these respective mice and evaluated lymphocyte phenotype, serologic autoimmunity, renal immunopathology, and clinical disease in the BAFF-Tg and non-Tg mouse sets.

View Article and Find Full Text PDF

It has long been known that B cells produce autoantibodies and, thereby, contribute to the pathogenesis of many autoimmune diseases. Systemic lupus erythematosus (SLE), a prototypic systemic autoimmune disorder, is characterized by high-circulating autoantibody titers and immune-complex deposition that can trigger inflammatory damage in multiple organs/organ systems. Although the interest in B cells in SLE has historically focused on their autoantibody production, we now appreciate that B cells have multiple autoantibody-independent roles in SLE as well.

View Article and Find Full Text PDF

Type I IFNs are potent regulators of innate and adaptive immunity and are implicated in the pathogenesis of systemic lupus erythematosus. Here we report that clinical and pathological lupus nephritis and serum anti-nuclear Ab levels are greatly attenuated in New Zealand Mixed (NZM) 2328 mice deficient in type I IFN receptors (IFNAR). To determine whether the inflammatory environment in NZM 2328 mice leads to IFNAR-regulated changes in dendritic cells (DC), the number, activation, and function of DC subsets were compared in 2- and 5-mo-old (clinically healthy) female NZM and NZM-IFNAR(-/-) mice.

View Article and Find Full Text PDF
Article Synopsis
  • Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a strong genetic basis, particularly focusing on gene products from the interferon pathway like STAT-1 and STAT-4, key elements in signaling pathways related to SLE susceptibility.
  • A study analyzed 56 single-nucleotide polymorphisms (SNPs) in STAT1 and STAT4 across nearly 10,000 lupus patients and controls from various races to find genetic associations.
  • Results indicated significant associations with SLE for several SNPs in the STAT4 gene, suggesting it plays a critical role in the disease's development, while associations with STAT1 were less clear, indicating the potential for new therapeutic approaches based on these findings.
View Article and Find Full Text PDF

TNF-alpha has both proinflammatory and immunoregulatory functions. Whereas a protective role for TNF administration in systemic lupus erythematosus (SLE)-prone (New Zealand Black x New Zealand White)F(1) mice has been established, it remains uncertain whether this effect segregates at the individual TNFR. We generated SLE-prone New Zealand Mixed 2328 mice genetically deficient in TNFR1, in TNFR2, or in both receptors.

View Article and Find Full Text PDF

In otherwise non-autoimmune-prone C57BL/6 (B6) mice rendered genetically deficient in CD152 (CTLA-4), polyclonal hypergammaglobulinemia with increased levels of systemic lupus erythematosus (SLE)-associated IgG autoantibodies, glomerular IgG and C3 deposition, and interstitial nephritis all developed by 3-5 wk of age. Remarkably, superimposing genetic deficiency of BAFF (B cell-activating factor belonging to the TNF family) onto CD152 deficiency did not substantially attenuate humoral autoimmunity and immunopathology in these mice, despite the resulting marked reduction in B-lineage cells. Although superimposing a BAFF transgene (resulting in constitutive BAFF overexpression) onto CD152-deficient mice did lead to increases in B-lineage cells and serum levels of certain SLE-associated IgG autoantibodies, renal immunopathology remained largely unaffected.

View Article and Find Full Text PDF

Microbial superantigens (SAg), including SEB and TSST-1, polyclonally activate T cells belonging to specific TCR BV families. A pathogenic role for SAg in various human diseases has been suggested, but enthusiasm for this view has been tempered by the T cell oligoclonality in these disorders. To assess whether T cell oligoclonality can emerge following protracted SAg stimulation, human PBMC were stimulated with SEB, TSST-1, or anti-CD3 mAb and maintained in culture with exogenous IL-2.

View Article and Find Full Text PDF