Background: The need for effective non-pharmaceutical infection prevention measures such as contact tracing in pandemics remains in care homes, but traditional approaches to contact tracing are not feasible in care homes. The CONTACT intervention introduces Bluetooth-enabled wearable devices (BLE wearables) as a potential solution for automated contact tracing. Using structured reports and reports triggered by positive COVID-19 cases in homes, we fed contact patterns and trends back to homes to support better-informed infection prevention decisions and reduce blanket application of restrictive measures.
View Article and Find Full Text PDFSocial network analysis can support quality improvement in care homes but traditional approaches to social network analysis are not always feasible in care homes. Recalling contacts and movements in a home is difficult for residents and staff and documentary and other sources of individual contacts can be unreliable. Bluetooth enabled wearable devices are a potential means of generating reliable, trustworthy, social network data in care home communities.
View Article and Find Full Text PDFAims: To monitor severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA contamination in vehicles operating in England during the pandemic, to better understand transmission risk of SARS-CoV-2 on public transport.
Methods And Results: We collected 1314 surface samples between December 2020 and April 2022 on trains and buses managed by five different transport operators. The presence of SARS-CoV-2 RNA was investigated through reverse transcription polymerase chain reaction (RT-PCR).
If some countries lead by example, standards may increasingly become normalized.
View Article and Find Full Text PDFThe Wells-Riley model has been widely used to estimate airborne infection risk, typically from a deterministic point of view (i.e., focusing on the average number of infections) or in terms of a per capita probability of infection.
View Article and Find Full Text PDFBackground: Many UK hospitals rely heavily on natural ventilation as their main source of airflow in patient wards. This method of ventilation can have cost and energy benefits, but it may lead to unpredictable flow patterns between indoor spaces, potentially leading to the unexpected transport of infectious material to other connecting zones. However, the effects of weather conditions on airborne transmission are often overlooked.
View Article and Find Full Text PDFBackground: Rapid and mass transmission of the SARS-CoV-2 virus amongst vulnerable people led to devastating effects from COVID-19 in care homes. The CONTACT intervention introduced Bluetooth Low Energy 'smart' wearable devices (BLE wearables) as a basis for automated contact tracing in, and feedback on infection risks and patterns to, care homes to try and improve infection prevention and control (IPC). We planned a cluster randomised controlled trial (RCT) of CONTACT.
View Article and Find Full Text PDFCOVID-19 has had a devastating impact worldwide, including in care homes where there have been substantial numbers of cases among a very vulnerable population. A key mechanism for managing exposure to the virus and targeting interventions is contact tracing. Unfortunately, environments such as care homes that were most catastrophically impacted by COVID-19 are also those least amenable to traditional contact tracing.
View Article and Find Full Text PDFThis is an account that should be heard of an important struggle: the struggle of a large group of experts who came together at the beginning of the COVID-19 pandemic to warn the world about the risk of airborne transmission and the consequences of ignoring it. We alerted the World Health Organization about the potential significance of the airborne transmission of SARS-CoV-2 and the urgent need to control it, but our concerns were dismissed. Here we describe how this happened and the consequences.
View Article and Find Full Text PDFHospital-acquired infections (HAIs) are a global challenge incurring mortalities and high treatment costs. The environment plays an important role in transmission due to contaminated air and surfaces. This includes microorganisms' deposition from the air onto surfaces.
View Article and Find Full Text PDFComputational fluid dynamics models have been developed to predict airborne exposure to the SARS-CoV-2 virus from a coughing person in a mechanically ventilated room. The models were run with three typical indoor air temperatures and relative humidities (RH). Quantile regression was used to indicate whether these have a statistically significant effect on the airborne exposure.
View Article and Find Full Text PDFSurface to hand transfer of viruses represents a potential mechanism for human exposure. An experimental process for evaluating the touch transfer of aerosol-deposited material is described based on controlling surface, tribological, and soft matter components of the transfer process. A range of high-touch surfaces were evaluated.
View Article and Find Full Text PDFMany infectious diseases, including COVID-19, are transmitted by airborne pathogens. There is a need for effective environmental control measures which, ideally, are not reliant on human behaviour. One potential solution is Krypton Chloride (KrCl) excimer lamps (often referred to as Far-UVC), which can efficiently inactivate pathogens, such as coronaviruses and influenza, in air.
View Article and Find Full Text PDFThe ability to model the dispersion of pathogens in exhaled breath is important for characterizing transmission of the SARS-CoV-2 virus and other respiratory pathogens. A Computational Fluid Dynamics (CFD) model of droplet and aerosol emission during exhalations has been developed and for the first time compared directly with experimental data for the dispersion of respiratory and oral bacteria from ten subjects coughing, speaking, and singing in a small unventilated room. The modeled exhalations consist of a warm, humid, gaseous carrier flow and droplets represented by a discrete Lagrangian particle phase which incorporates saliva composition.
View Article and Find Full Text PDFWe propose the Transmission of Virus in Carriages (TVC) model, a computational model which simulates the potential exposure to SARS-CoV-2 for passengers traveling in a subway rail system train. This model considers exposure through three different routes: fomites via contact with contaminated surfaces; close-range exposure, which accounts for aerosol and droplet transmission within 2 m of the infectious source; and airborne exposure via small aerosols which does not rely on being within 2 m distance from the infectious source. Simulations are based on typical subway parameters and the aim of the study is to consider the relative effect of environmental and behavioral factors including prevalence of the virus in the population, number of people traveling, ventilation rate, and mask wearing as well as the effect of model assumptions such as emission rates.
View Article and Find Full Text PDFSome infectious diseases, including COVID-19, can undergo airborne transmission. This may happen at close proximity, but as time indoors increases, infections can occur in shared room air despite distancing. We propose two indicators of infection risk for this situation, that is, relative risk parameter () and risk parameter ().
View Article and Find Full Text PDFObjectives: To help people make decisions about the most effective mitigation measures against SARS-CoV-2 transmission in different scenarios, the likelihoods of transmission by different routes need to be quantified to some degree (however uncertain). These likelihoods need to be communicated in an appropriate way to illustrate the relative importance of different routes in different scenarios, the likely effectiveness of different mitigation measures along those routes, and the level of uncertainty in those estimates. In this study, a pragmatic expert elicitation was undertaken to supply the underlying quantitative values to produce such a communication tool.
View Article and Find Full Text PDFSelf-contamination during doffing of personal protective equipment (PPE) is a concern for healthcare workers (HCW) following SARS-CoV-2-positive patient care. Staff may subconsciously become contaminated through improper glove removal; so, quantifying this exposure is critical for safe working procedures. HCW surface contact sequences on a respiratory ward were modeled using a discrete-time Markov chain for: IV-drip care, blood pressure monitoring, and doctors' rounds.
View Article and Find Full Text PDFThe use of cloth face coverings and face masks has become widespread in light of the COVID-19 pandemic. This paper presents a method of using low cost wirelessly connected carbon dioxide (CO) sensors to measure the effects of properly and improperly worn face masks on the concentration distribution of exhaled breath around the face. Four types of face masks are used in two indoor environment scenarios.
View Article and Find Full Text PDFFirst responders may have high SARS-CoV-2 infection risks due to working with potentially infected patients in enclosed spaces. The study objective was to estimate infection risks per transport for first responders and quantify how first responder use of N95 respirators and patient use of cloth masks can reduce these risks. A model was developed for two Scenarios: an ambulance transport with a patient actively emitting a virus in small aerosols that could lead to airborne transmission (Scenario 1) and a subsequent transport with the same respirator or mask use conditions, an uninfected patient; and remaining airborne SARS-CoV-2 and contaminated surfaces due to aerosol deposition from the previous transport (Scenario 2).
View Article and Find Full Text PDF