Publications by authors named "Noah Fierer"

Over a quarter of adults in the United States suffer from seasonal allergies, yet the broader spatiotemporal patterns in seasonal allergy trends remain poorly resolved. This knowledge gap persists due to difficulties in quantifying allergies as symptoms are seldom severe enough to warrant hospital visits. We show that we can use machine learning to extract relevant data from Twitter posts and Google searches to examine population-level trends in seasonal allergies at high spatial and temporal resolution, validating the approach against hospital record data obtained from selected counties in California, United States.

View Article and Find Full Text PDF

Genomic information is now available for a broad diversity of bacteria, including uncultivated taxa. However, we have corresponding knowledge on environmental preferences (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Measuring the growth rate of microorganisms is crucial for understanding their role in ecosystems, as it reflects their resource use, biomass production, and impact on elements essential for life.
  • Microbial adaptability determines their success, where rapid reproduction in favorable conditions and survival strategies in harsher conditions are linked to their relative growth rates.
  • Advanced techniques like omics and stable isotope probing allow scientists to analyze microbial growth in soil, helping to connect microbial diversity and environmental factors to important ecosystem processes like carbon flux and nutrient cycling.
View Article and Find Full Text PDF

Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum-from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the "slow lane." However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them .

View Article and Find Full Text PDF

Flagellar motility is a key bacterial trait as it allows bacteria to navigate their immediate surroundings. Not all bacteria are capable of flagellar motility, and the distribution of this trait, its ecological associations, and the life history strategies of flagellated taxa remain poorly characterized. We developed and validated a genome-based approach to infer the potential for flagellar motility across 12 bacterial phyla (26 192 unique genomes).

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how soil microbiomes (bacteria and fungi) affect the flavor chemistry of harvested mustard seeds.
  • Researchers introduced different soil microbial communities to mustard plants and analyzed the resulting seed flavor based on glucosinolate content, which contributes to spicy and bitter tastes.
  • Results showed specific links between the composition of the soil microbiome and the concentration of allyl glucosinolate in the seeds, highlighting the role of certain microbial taxa and genes related to sulfur metabolism in influencing flavor.
View Article and Find Full Text PDF

Wildfires at the wildland-urban interface (WUI) are increasingly common. The impacts of such events are likely distinct from those that occur strictly in wildland areas, as we would expect an elevated likelihood of soil contamination due to the combustion of anthropogenic materials. We evaluated the impacts of a wildfire at the WUI on soil contamination, sampling soils from residential and nonresidential areas located inside and outside the perimeter of the 2021 Marshall Fire in Colorado, USA.

View Article and Find Full Text PDF

Due to the complex nature of microbiome data, the field of microbial ecology has many current and potential uses for machine learning (ML) modeling. With the increased use of predictive ML models across many disciplines, including microbial ecology, there is extensive published information on the specific ML algorithms available and how those algorithms have been applied. Thus, our goal is not to summarize the breadth of ML models available or compare their performances.

View Article and Find Full Text PDF

Many microorganisms are auxotrophic-unable to synthesize the compounds they require for growth. With this work, we quantify the prevalence of amino acid auxotrophies across a broad diversity of bacteria and habitats. We predicted the amino acid biosynthetic capabilities of 26,277 unique bacterial genomes spanning 12 phyla using a metabolic pathway model validated with empirical data.

View Article and Find Full Text PDF

There is widespread concern that cessation of grazing in historically grazed ecosystems is causing biotic homogenization and biodiversity loss. We used 12 montane grassland sites along an 800 km north-south gradient across the UK, to test whether cessation of grazing affects local - and -diversity of below-ground food webs. We show cessation of grazing leads to strongly decreased -diversity of most groups of soil microbes and fauna, particularly of relatively rare taxa.

View Article and Find Full Text PDF

In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms.

View Article and Find Full Text PDF

Manipulating the microbiome of cropland soils has the potential to accelerate soil carbon sequestration, but strategies to do so need to be carefully vetted. Here, we highlight the general steps required to develop, implement, and validate such microbe-based strategies.

View Article and Find Full Text PDF

Leaves harbor distinct microbial communities that can have an important impact on plant health and microbial ecosystems worldwide. Nevertheless, the ecological processes that shape the composition of leaf microbial communities remain unclear, with previous studies reporting contradictory results regarding the importance of bacterial dispersal versus host selection. This discrepancy could be driven in part because leaf microbiome studies typically consider the upper and lower leaf surfaces as a single entity despite these habitats possessing considerable anatomical differences.

View Article and Find Full Text PDF

The environmental preferences of many microbes remain undetermined. This is the case for bacterial pH preferences, which can be difficult to predict a priori despite the importance of pH as a factor structuring bacterial communities in many systems. We compiled data on bacterial distributions from five datasets spanning pH gradients in soil and freshwater systems (1470 samples), quantified the pH preferences of bacterial taxa across these datasets, and compiled genomic data from representative bacterial taxa.

View Article and Find Full Text PDF

The rate at which microorganisms grow and reproduce is fundamental to our understanding of microbial physiology and ecology. While soil microbiologists routinely quantify soil microbial biomass levels and the growth rates of individual taxa in culture, there is a limited understanding of how quickly microbes actually grow in soil. For this work, we posed the simple question: what are the growth rates of soil microorganisms? In this study, we measure these rates in three distinct soil environments using hydrogen-stable isotope probing of lipids with H-enriched water.

View Article and Find Full Text PDF

Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils.

View Article and Find Full Text PDF

The National Institute of Allergy and Infectious Diseases organized a symposium in June 2022, to facilitate discussion of the environmental risks for nontuberculous mycobacteria exposure and disease. The expert researchers presented recent studies and identified numerous research gaps. This report summarizes the discussion and identifies six major areas of future research related to culture-based and culture independent laboratory methods, alternate culture media and culturing conditions, frameworks for standardized laboratory methods, improved environmental sampling strategies, validation of exposure measures, and availability of high-quality spatiotemporal data.

View Article and Find Full Text PDF
Article Synopsis
  • The island of Hunga Tonga Hunga Ha'apai (HTHH) was created by volcanic eruptions and existed for 7 years before a significant eruption destroyed it on January 15, 2022, providing a unique chance to study microbial life on new land.
  • Researchers analyzed the microbial communities in HTHH's sediments and found unexpected diversity, including bacteria that thrive in extreme conditions, rather than the common cyanobacteria expected in early succession stages.
  • Despite the island's destruction preventing future studies, the findings highlight the distinct origins and survival strategies of microbial life in newly-formed environments, influenced by nearby geothermal activity.
View Article and Find Full Text PDF

Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome.

View Article and Find Full Text PDF

There are complex interactions between an organism's microbiome and its response to stressors, often referred to as the 'gut-brain axis'; however, the ecological relevance of this axis in wild animals remains poorly understood. Here, we used a chronic mild stress protocol to induce stress in wild-caught house sparrows (Passer domesticus), and compared microbial communities among stressed animals, those recovering from stress, captive controls (unstressed) and a group not brought into captivity. We assessed changes in microbial communities and abundance of shed microbes by culturing cloacal samples on multiple media to select for aerobic and anaerobic bacteria and fungi.

View Article and Find Full Text PDF

The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined.

View Article and Find Full Text PDF

Understanding how terrestrial biotic communities have responded to glacial recession since the Last Glacial Maximum (LGM) can inform present and future responses of biota to climate change. In Antarctica, the Transantarctic Mountains (TAM) have experienced massive environmental changes associated with glacial retreat since the LGM, yet we have few clues as to how its soil invertebrate-dominated animal communities have responded. Here, we surveyed soil invertebrate fauna from above and below proposed LGM elevations along transects located at 12 features across the Shackleton Glacier region.

View Article and Find Full Text PDF

The ubiquity and long-range transport of the microorganisms inhabiting dust can pose a serious risk to human, animal, and plant health. The well-recognized importance of dust-associated microorganisms contrasts starkly with our limited understanding of the factors determining the variation in the composition of these communities at the global scale. Here, we provide the first insight into the global determinants of dust-associated microorganisms by quantifying the environmental factors shaping bacterial and fungal community composition in 467 outdoor settled dust samples collected from 33 countries and 6 continents.

View Article and Find Full Text PDF

Microbes that thrive in premise plumbing can have potentially important effects on human health. Yet, how and why plumbing-associated microbial communities vary across broad spatial scales remain undetermined. We characterized the bacterial communities in 496 showerheads collected from across the continental United States.

View Article and Find Full Text PDF

The structure and function of the soil microbiome of urban greenspaces remain largely undetermined. We conducted a global field survey in urban greenspaces and neighboring natural ecosystems across 56 cities from six continents, and found that urban soils are important hotspots for soil bacterial, protist and functional gene diversity, but support highly homogenized microbial communities worldwide. Urban greenspaces had a greater proportion of fast-growing bacteria, algae, amoebae, and fungal pathogens, but a lower proportion of ectomycorrhizal fungi than natural ecosystems.

View Article and Find Full Text PDF