Objective: This study evaluates the potential for improving patient safety by introducing a metacognitive attention aid that enables clinicians to more easily access and use existing alarm/alert information. It is hypothesized that this introduction will enable clinicians to easily triage alarm/alert events and quickly recognize emergent opportunities to adapt care delivery. The resulting faster response to clinically important alarms/alerts has the potential to prevent adverse events and reduce healthcare costs.
View Article and Find Full Text PDFA visualization tool that integrates numeric information from an arterial blood gas report with novel graphics was designed for the purpose of promoting rapid and accurate interpretation of acid-base data. A study compared data interpretation performance when arterial blood gas results were presented in a traditional numerical list versus the graphical visualization tool. Critical-care nurses (n = 15) and nursing students (n = 15) were significantly more accurate identifying acid-base states and assessing trends in acid-base data when using the graphical visualization tool.
View Article and Find Full Text PDFA visualization tool that integrates numeric information from an arterial blood gas report with novel graphics was designed for the purpose of promoting rapid and accurate interpretation of acid-base data. A study compared data interpretation performance when arterial blood gas results were presented in a traditional numerical list versus the graphical visualization tool. Critical-care nurses (n = 15) and nursing students (n = 15) were significantly more accurate identifying acid-base states and assessing trends in acid-base data when using the graphical visualization tool.
View Article and Find Full Text PDFIntroduction: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses.
View Article and Find Full Text PDFIntroduction: Sevoflurane-remifentanil interaction models that predict responsiveness and response to painful stimuli have been evaluated in patients undergoing elective surgery. Preliminary evaluations of model predictions were found to be consistent with observations in patients anesthetized with sevoflurane, remifentanil, and fentanyl. This study explored the feasibility of adapting the predictions of sevoflurane-remifentanil interaction models to an isoflurane-fentanyl anesthetic.
View Article and Find Full Text PDFBackground: Part task training (PTT) focuses on dividing complex tasks into components followed by intensive concentrated training on individual components. Variable priority training (VPT) focuses on optimal distribution of attention when performing multiple tasks simultaneously with the goal of flexible allocation of attention. This study explored how principles of PTT and VPT adapted to anesthesia training would improve first-year anesthesiology residents' management of simulated adverse airway and respiratory events.
View Article and Find Full Text PDFIntroduction: In this study, we explored how a set of remifentanil-propofol response surface interaction models developed from data collected in volunteers would predict responses to events in patients undergoing elective surgery. Our hypotheses were that these models would predict a patient population's loss and return of responsiveness and the presence or absence of a response to laryngoscopy and the response to pain after surgery.
Methods: Twenty-one patients were enrolled.
Introduction: A graphic presentation of complex information can facilitate early detection and management of adverse events. Prior work found that graphical presentation of selected cardiovascular variables led to earlier detection of a simulated ischemic event. Based on these findings, a second evaluation explored the utility of a graphical cardiovascular display (GCD) in a variety of simulated adverse cardiopulmonary events for two different display configurations.
View Article and Find Full Text PDFBackground: Usable real-time displays of intravenous anesthetic concentrations and effects could significantly enhance intraoperative clinical decision-making. Pharmacokinetic models are available to estimate past, present, and future drug effect-site concentrations, and pharmacodynamic models are available to predict the drug's associated physiologic effects.
Methods: An interdisciplinary research team (bioengineering, architecture, anesthesiology, computer engineering, and cognitive psychology) developed a graphic display that presents the real-time effect-site concentrations, normalized to the drugs' EC(95), of intravenous drugs.