The use of kilohertz-frequency (KHF) waveforms has rapidly gained momentum in transcutaneous spinal cord stimulation (tSCS) to restore motor function after paralysis. However, the mechanisms by which these fast-alternating currents depolarize efferent and afferent fibers remain unknown. Our study fills this research gap by providing a hypothesis-and evidence-based investigation using peripheral nerve stimulation, lumbar tSCS, and cervical tSCS in 25 unimpaired participants together with computational modeling.
View Article and Find Full Text PDFJSES Int
July 2024
Background: Proximal humerus fractures are a common injury, predominantly affecting older adults. This study aimed to develop risk-prediction models for prolonged length of hospital stay (LOS), serious adverse complications, and readmission within 30 days of surgically treated proximal humerus fractures using machine learning (ML) techniques.
Methods: Adult patients (age >18) who underwent open reduction internal fixation (ORIF), hemiarthroplasty, or total shoulder arthroplasty for proximal humerus fracture between 2016 and 2021 were included.
Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation.In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals.
View Article and Find Full Text PDFObjective: Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation.
Approach: In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals.