Volumetric modulated arc therapy planning is a challenging problem in high-dimensional, non-convex optimization. Traditionally, heuristics such as fluence-map-optimization-informed segment initialization use locally optimal solutions to begin the search of the full arc therapy plan space from a reasonable starting point. These routines facilitate arc therapy optimization such that clinically satisfactory radiation treatment plans can be created in a reasonable time frame.
View Article and Find Full Text PDFJ Appl Clin Med Phys
August 2021
Purpose: Deep-learning-based segmentation models implicitly learn to predict the presence of a structure based on its overall prominence in the training dataset. This phenomenon is observed and accounted for in deep-learning applications such as natural language processing but is often neglected in segmentation literature. The purpose of this work is to demonstrate the significance of class imbalance in deep-learning-based segmentation and recommend tuning of the neural network optimization objective.
View Article and Find Full Text PDFPurpose: We propose a treatment planning framework that accounts for weekly lung tumor shrinkage using cone beam computed tomography (CBCT) images with a deep learning-based model.
Methods: Sixteen patients with non-small-cell lung cancer (NSCLC) were selected with one planning CT and six weekly CBCTs each. A deep learning-based model was applied to predict the weekly deformation of the primary tumor based on the spatial and temporal features extracted from previous weekly CBCTs.
J Appl Clin Med Phys
September 2020