Publications by authors named "Noah Beltrami"

A heteromeric guanosine (G)-quadruplex centered self-assembly approach is developed to prepare compact light-harvesting antenna modules featuring multiple donor dyes and a single toehold region. Due to the mix-and-match nature of our approach, the number and placement of donor dyes can be readily fine-tuned quadruplex assembly. Moreover, hybridization of the toehold with an acceptor containing sequence results in directional energy transfer ensembles with effective absorption coefficients in the 10 M cm range.

View Article and Find Full Text PDF

Base-pair-driven toehold-mediated strand displacement (BP-TMSD) is a fundamental concept employed for constructing DNA machines and networks with a gamut of applications─from theranostics to computational devices. To broaden the toolbox of dynamic DNA chemistry, herein, we introduce a synthetic surrogate termed host-guest-driven toehold-mediated strand displacement (HG-TMSD) that utilizes bioorthogonal, cucurbit[7]uril (CB[7]) interactions with guest-linked input sequences. Since control of the strand-displacement process is salient, we demonstrate how HG-TMSD can be finely modulated via changes to the structure of the input sequence (including synthetic guest head-group and/or linker length).

View Article and Find Full Text PDF

The global burden of the SARS-CoV-2 pandemic is thought to result from a high viral transmission rate. Here, we consider mechanisms that influence host cell-virus binding between the SARS-CoV-2 spike glycoprotein (SPG) and the human angiotensin-converting enzyme 2 (ACE2) with a series of peptides designed to mimic key ACE2 hot spots through adopting a helical conformation analogous to the N-terminal α1 helix of ACE2, the region experimentally shown to bind to the SARS-CoV-2 receptor-binding domain (RBD). The approach examines putative structure/function relations by assessing SPG binding affinity with surface plasmon resonance (SPR).

View Article and Find Full Text PDF

We previously associated a missense mutation of the tc0668 gene of serial in vitro-passaged Chlamydia muridarum, a murine model of human urogenital C. trachomatis, with severely attenuated disease development in the upper genital tract of female mice. Since these mutants also contained a TC0237 Q117E missense mutation that enhances their in vitro infectivity, an effort was made here to isolate and characterize a tc0668 single mutant to determine its individual contribution to urogenital pathogenicity.

View Article and Find Full Text PDF