Antibodies are widely used for diagnostic and therapeutic applications because of their sensitive and specific recognition of a wide range of targets; however, their application is limited by their structural complexity. More demanding applications require greater stability than can be achieved by immunoglobulin-based reagents. Highly stable, protein-based affinity reagents are being investigated for this role with the goal of identifying a suitable scaffold that can attain specificity and sensitivity similar to that of antibodies while performing under conditions where antibodies fail.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (e.
View Article and Find Full Text PDFThese protocols describe a yeast surface display-based process for the rapid selection of antibodies from immunized mice, eliminating the need for creating and screening hybridoma fusions. A yeast surface display library of single-chain antibody fragments (scFvs) is created from antigen-binding B cells from the splenocytes of immunized mice. The antigen targeted library is then screened for antigen specific scFv by magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS).
View Article and Find Full Text PDFSandwich ELISA microarrays have great potential for validating disease biomarkers. Each ELISA relies on robust-affinity reagents that retain activity when immobilized on a solid surface or when labeled for detection. Single-chain antibodies (scFv) are affinity reagents that have greater potential for high-throughput production than traditional IgG.
View Article and Find Full Text PDFThe primary toxicity associated with repeated oral administration of the PDE4 inhibitor IC542 to the rat is an inflammatory response leading to tissue damage primarily in the gastrointestinal tract and mesentery. Although necrotizing vasculitis is frequently seen with other PDE4 inhibitors, blood vessel injury was rare following IC542 administration and was always associated with inflammation in the surrounding tissue. The incidence and severity of the histologic changes in these studies correlated with elevated peripheral blood leukocytes, serum IL-6, haptoglobin, and fibrinogen, and with decreased serum albumin.
View Article and Find Full Text PDF