Publications by authors named "Noah B Lewis"

Electrochemical proton-coupled electron transfer (PCET) reactions can proceed via an outer-sphere electron transfer to solution (OS-PCET) or through an inner-sphere mechanism by interfacial polarization of surface-bound active sites (I-PCET). Although OS-PCET has been extensively studied with molecular insight, the inherent heterogeneity of surfaces impedes molecular-level understanding of I-PCET. Herein we employ graphite-conjugated carboxylic acids (GC-COOH) as molecularly well-defined hosts of I-PCET to isolate the intrinsic kinetics of I-PCET.

View Article and Find Full Text PDF

Electrochemical polarization, which often plays a critical role in driving chemical reactions at solid-liquid interfaces, can arise spontaneously through the exchange of ions and/or electrons across the interface. However, the extent to which such spontaneous polarization prevails at nonconductive interfaces remains unclear because such materials preclude measuring and controlling the degree of interfacial polarization standard (, wired) potentiometric methods. Herein, we circumvent the limitations of wired potentiometry by applying infrared and ambient pressure X-ray photoelectron spectroscopies (AP-XPS) to probe the electrochemical potential of nonconductive interfaces as a function of solution composition.

View Article and Find Full Text PDF