Virtual collaborative Q&A communities generate shared knowledge through the interaction of people and content. This knowledge is often fragmented, and its value as a collective, collaboratively formed product, is largely overlooked. Inspired by work on individual mental semantic networks, the current study explores the networks formed by user-added associative links as reflecting an aspect of self-organization within the communities' collaborative knowledge sharing.
View Article and Find Full Text PDFMitochondria are cellular organelles critical for numerous cellular processes and harboring their own circular mitochondrial DNA (mtDNA). Most mtDNA associated disorders (either deletions, mutations, or depletion) lead to multisystemic disease, often severe at a young age, with no disease-modifying therapies. Mitochondria have a capacity to enter eukaryotic cells and to be transported between cells.
View Article and Find Full Text PDFMonocyte-derived macrophages are readily differentiating cells that adapt their gene expression profile to environmental cues and functional needs. During the resolution of inflammation, monocytes initially differentiate to reparative phagocytic macrophages and later to pro-resolving non-phagocytic macrophages that produce high levels of IFNβ to boost resolutive events. Here, we performed in-depth analysis of phagocytic and non-phagocytic myeloid cells to reveal their distinct features.
View Article and Find Full Text PDFThe uptake of apoptotic polymorphonuclear cells (PMN) by macrophages is critical for timely resolution of inflammation. High-burden uptake of apoptotic cells is associated with loss of phagocytosis in resolution phase macrophages. Here, using a transcriptomic analysis of macrophage subsets, we show that non-phagocytic resolution phase macrophages express a distinct IFN-β-related gene signature in mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2019
Biomineralization is the process by which living organisms use minerals to form hard structures that protect and support them. Biomineralization is believed to have evolved rapidly and independently in different phyla utilizing preexisting components. The mechanistic understanding of the regulatory networks that drive biomineralization and their evolution is far from clear.
View Article and Find Full Text PDFCell Transplant
January 2018
The ephemeral placenta provides a noncontroversial source of young, healthy cells of both maternal and fetal origin from which cell therapy products can be manufactured. The 2 advantages of using live cells as therapeutic entities are: (a) in their environmental-responsive, multifactorial secretion profile and (b) in their activity as a "slow-release drug delivery system," releasing secretions over a long time frame. A major difficulty in translating cell therapy to the clinic involves challenges of large-scale, robust manufacturing while maintaining product characteristics, identity, and efficacy.
View Article and Find Full Text PDFBackground: Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats.
View Article and Find Full Text PDFBackground: In peripheral artery disease (PAD), blockage of the blood supply to the limbs, most frequently the legs, leads to impaired blood flow and tissue ischemia. Pluristem's PLX-PAD cells are placenta-derived mesenchymal stromal-like cells currently in clinical trials for the treatment of peripheral artery diseases.
Methods: In this work, the hind limb ischemia (HLI) mouse model was utilized to study the efficacy and mechanism of action of PLX-PAD cells.
Embryonic development evolves by balancing stringent morphological constraints with genetic and environmental variation. The design principle that allows developmental transcriptional programs to conserve embryonic morphology while adapting to environmental changes is still not fully understood. To address this fundamental challenge, we compare developmental transcriptomes of two sea urchin species, Paracentrotus lividus and Strongylocentrotus purpuratus, that shared a common ancestor about 40 million years ago and are geographically distant yet show similar morphology.
View Article and Find Full Text PDFEarly in embryogenesis, maternally deposited transcripts are degraded and new zygotic transcripts are generated during the maternal to zygotic transition. Recent works have shown that early zygotic transcripts are short compared to maternal transcripts, in zebrafish and Drosophila species. The reduced zygotic transcript length was attributed to the short cell cycle in these organisms that prevents the transcription of long primary transcripts (intron delay).
View Article and Find Full Text PDFEmbryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind.
View Article and Find Full Text PDFSponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts.
View Article and Find Full Text PDFCnidarians are widely distributed basal metazoans that play an important role in the marine ecosystem. Their genetic diversity and dispersal depends on successful oogenesis, fertilization and embryogenesis. To understand the processes that lead to successful embryogenesis in these basal organisms, we conducted comparative proteomics on the model sea anemone Nematostella vectensis.
View Article and Find Full Text PDFDefensive symbiosis is amongst nature's most important interactions shaping the ecology and evolution of all partners involved. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbors one obligatory bacterial symbiont and up to seven different facultative symbionts, some of which are known to protect the aphid from pathogens, natural enemies, and other mortality factors. Pea aphids typically drop off the plant when a mammalian herbivore approaches it to avoid incidental predation.
View Article and Find Full Text PDFDistrust poses a challenge to human cognition because it signals that information from the environment should not be taken at face value. Accordingly, in the present research, we argue and show that distrust, both as a chronic disposition and as a contextual factor, blocks accessibility effects. We report five studies in which distrust is either measured (Studies 2 and 3) or manipulated (Studies 1, 4 and 5), and test the "distrust-blocks-accessibility hypothesis" on both verbal and non-verbal accessibility effects.
View Article and Find Full Text PDFBackground: The moon jellyfish Aurelia aurita is a widespread scyphozoan species that forms large seasonal blooms. Here we provide the first comprehensive view of the entire complex life of the Aurelia Red Sea strain by employing transcriptomic profiling of each stage from planula to mature medusa.
Results: A de novo transcriptome was assembled from Illumina RNA-Seq data generated from six stages throughout the Aurelia life cycle.
Environmental contamination from heavy metals poses a global concern for the marine environment, as heavy metals are passed up the food chain and persist in the environment long after the pollution source is contained. Cnidarians play an important role in shaping marine ecosystems, but environmental pollution profoundly affects their vitality. Among the cnidarians, the sea anemone Nematostella vectensis is an advantageous model for addressing questions in molecular ecology and toxicology as it tolerates extreme environments and its genome has been published.
View Article and Find Full Text PDFThe blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors.
View Article and Find Full Text PDFThroughout the plant and animal kingdoms specific cell types become polyploid, increasing their DNA content to attain a large cell size. In mammals, megakaryocytes (MKs) become polyploid before fragmenting into platelets. The mammalian trophoblast giant cells (TGCs) exploit their size to form a barrier between the maternal and embryonic tissues.
View Article and Find Full Text PDFHigh-throughput sequencing has allowed for unprecedented detail in gene expression analyses, yet its efficient application to single cells is challenged by the small starting amounts of RNA. We have developed CEL-Seq, a method for overcoming this limitation by barcoding and pooling samples before linearly amplifying mRNA with the use of one round of in vitro transcription. We show that CEL-Seq gives more reproducible, linear, and sensitive results than a PCR-based amplification method.
View Article and Find Full Text PDFPrecise DNA replication is crucial for genome maintenance, yet this process has been inherently difficult to study on a genome-wide level in untransformed differentiated metazoan cells. To determine how metazoan DNA replication can be repressed, we examined regions selectively under-replicated in Drosophila polytene salivary glands, and found they are transcriptionally silent and enriched for the repressive H3K27me3 mark. In the first genome-wide analysis of binding of the origin recognition complex (ORC) in a differentiated metazoan tissue, we find that ORC binding is dramatically reduced within these large domains, suggesting reduced initiation as one mechanism leading to under-replication.
View Article and Find Full Text PDFScience
December 2010
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction.
View Article and Find Full Text PDF