The neurophysiological mechanisms supporting brain maturation are fundamental to attention and memory capacity across the lifespan. Human brain regions develop at different rates, with many regions developing into the third and fourth decades of life. Here, in this preregistered study (https://osf.
View Article and Find Full Text PDFCombining existing datasets to investigate key questions in developmental cognitive neuroscience brings exciting opportunities and unique challenges. However, many data pooling methods require identical or harmonized methodologies that are often not feasible. We propose Integrative Data Analysis (IDA) as a promising framework to advance developmental cognitive neuroscience with secondary data analysis.
View Article and Find Full Text PDFObjective: In tasks involving new visuospatial information, we rely on working memory, supported by a distributed brain network. We investigated the dynamic interplay between brain regions, including cortical and white matter structures, to understand how neural interactions change with different memory loads and trials, and their subsequent impact on working memory performance.
Methods: Patients undertook a task of immediate spatial recall during intracranial EEG monitoring.
Previous brain imaging studies have identified three brain regions that selectively respond to visual scenes, the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex (RSC). There is growing evidence that these visual scene-sensitive regions process different types of scene information and may have different developmental timelines in supporting scene perception. How these scene-sensitive regions support memory functions during child development is largely unknown.
View Article and Find Full Text PDFThe human hippocampus (Hc) is critical for memory function across the lifespan. It is comprised of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors (CA) 1-4, and subiculum, each of which may be differentially susceptible to neurodevelopmental and neurodegenerative mechanisms. Identifying age-related differences in Hc subfield volumes can provide insights into neural mechanisms of memory function across the lifespan.
View Article and Find Full Text PDFThe hippocampus (Hc) consists of cytoarchitectonically and functionally distinct subfields: dentate gyrus (DG), cornu ammonis (CA1-3), and subiculum. In adults, a single nucleotide polymorphism (rs17070145, C→ T) in KIBRA, a gene encoding the eponymous (KIdney-BRAin) protein, is associated with variability in Hc subfield volumes and episodic memory. T-allele carriers have larger DG and CA volumes and better episodic memory compared to C-homozygotes.
View Article and Find Full Text PDFThe quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood.
View Article and Find Full Text PDFThe hippocampus is composed of cytoarchitecturally distinct subfields that support specific memory functions. Variations in total hippocampal volume across development have been linked to socioeconomic status (SES), a proxy for access to material resources, medical care, and quality education. High childhood household SES is associated with greater cognitive abilities in adulthood.
View Article and Find Full Text PDFPreterm birth (< 37 weeks gestation) has been associated with memory deficits, which has prompted investigation of possible alterations in hippocampal volume in this population. However, existing literature reports varying effects of premature birth on hippocampal volume. Specifically, it is unclear whether smaller hippocampal volume in preterm-born individuals is merely reflective of smaller total brain volume.
View Article and Find Full Text PDFRecollection of past events has been associated with the core recollection network comprising the posterior medial temporal lobe and parietal regions, as well as the medial prefrontal cortex (mPFC). The development of the brain basis for recollection is understudied. In a sample of adults (n = 22; 18-25 years) and children (n = 23; 9-13 years), the present study aimed to address this knowledge gap using a cued recall paradigm, known to elicit recollection experience.
View Article and Find Full Text PDFLarge-scale brain networks undergo functional reorganization over the course of the lifespan, with concurrent implications for cognition. Characterizing network connectivity during a task may provide complementary insight into cognitive development and aging, to that provided by resting-state. We assessed network background connectivity, which refers to connectivity that remains after task effects have been regressed out, during a visual memory-encoding task in a lifespan sample.
View Article and Find Full Text PDFUnderstanding complex human brain functions is critically informed by studying such functions during development. Here, we addressed a major gap in models of human memory by leveraging rare direct electrophysiological recordings from children and adolescents. Specifically, memory relies on interactions between the medial temporal lobe (MTL) and prefrontal cortex (PFC), and the maturation of these interactions is posited to play a key role in supporting memory development.
View Article and Find Full Text PDFFunctional MRI (fMRI) is a key tool for investigating neural underpinnings of cognitive development. Yet, in recent years, the reliability of fMRI effects has come into question and with it, the feasibility of using task-based fMRI to identify developmental changes related to cognition. Here, we investigated the reliability of task-based fMRI activations with a widely used subsequent memory paradigm using two developmental samples: a cross-sectional sample (n = 85, age 8-25 years) and a test-retest sample (n = 24, one-month follow up, age 8-20 years).
View Article and Find Full Text PDFNegative subsequent memory effects in functional MRI studies of memory formation have been linked to individual differences in memory performance, yet the effect of age on this association is currently unclear. To provide insight into the brain systems related to memory across the lifespan, we examined functional neuroimaging data acquired during episodic memory formation and behavioral performance from a memory recognition task in a sample of 109 participants, including three developmental age groups (8-12, 13-17, 18-25 year-olds) and one additional group of older adults (55-85 year-olds). Young adults showed the highest memory performance and strongest negative subsequent memory effects, while older adults showed reduced negative subsequent memory effects relative to young adults.
View Article and Find Full Text PDFThe hippocampus (Hc) is composed of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors 1-3 (CA1-3), and subiculum. Limited evidence suggests differential maturation rates across the Hc subfields. While longitudinal studies are essential in demonstrating differential development of Hc subfields, a prerequisite for interpreting meaningful longitudinal effects is establishing test-retest consistency of Hc subfield volumes measured in vivo over time.
View Article and Find Full Text PDFPrenatal alcohol exposure (PAE) is associated with physical anomalies, growth restriction, and a range of neurobehavioral deficits. Although declarative memory impairment has been documented extensively in individuals with fetal alcohol spectrum disorders (FASD), this cognitive process has been examined in only one functional magnetic resonance imaging (fMRI) study, and mechanisms underlying this impairment are not well understood. We used an event-related fMRI design to examine neural activations during visual scene encoding that predict subsequent scene memory in 51 right-handed children (age range = 10-14 years, M = 11.
View Article and Find Full Text PDFThe myeloarchitecture of the corpus callosum (CC) is characterized as a mosaic of distinct differences in fiber density of small- and large-diameter axons along the anterior-posterior axis; however, regional and age differences across the lifespan are not fully understood. Using multiecho T2 magnetic resonance imaging combined with multi-T2 fitting, the myelin water fraction (MWF) and geometric-mean of the intra-/extracellular water T2 (geomT2IEW) in 395 individuals (7-85 years; 41% males) were examined. The approach was validated where regional patterns along the CC closely resembled the histology; MWF matched mean axon diameter and geomT2IEW mirrored the density of large-caliber axons.
View Article and Find Full Text PDFProcessing of low-level visual information shows robust developmental gains through childhood and adolescence. However, it is unknown whether low-level visual processing in the occipital cortex supports age-related gains in memory for complex visual stimuli. Here, we examined occipital alpha activity during visual scene encoding in 24 children and adolescents, aged 6.
View Article and Find Full Text PDFNeuroimaging evidence suggests that the development of the hippocampus, a brain structure critical for memory function, contributes to the improvements of episodic memory between middle childhood to adulthood. However, investigations on age differences in hippocampal activation and functional connectivity and their contributions to the development of memory have yielded mixed results. Given the known structural and functional heterogeneity along the long axis of the hippocampus, we investigated age differences in the activation and functional connectivity in hippocampal subregions with a cross-sectional sample of 96 participants ages 8-25 years.
View Article and Find Full Text PDFA suboptimal intrauterine environment is thought to increase the probability of deviation from the typical neurodevelopmental trajectory, potentially contributing to the etiology of learning disorders. Yet the cumulative influence of individual antenatal risk factors on emergent learning skills has not been sufficiently examined. We sought to determine whether antenatal complications, in aggregate, are a source of variability in preschoolers' kindergarten readiness, and whether specific classes of antenatal risk play a prominent role.
View Article and Find Full Text PDFIntroduction: Heterogeneity of segmentation protocols for medial temporal lobe regions and hippocampal subfields on magnetic resonance imaging hinders the ability to integrate findings across studies. We aim to develop a harmonized protocol based on expert consensus and histological evidence.
Methods: Our international working group, funded by the EU Joint Programme-Neurodegenerative Disease Research (JPND), is working toward the production of a reliable, validated, harmonized protocol for segmentation of medial temporal lobe regions.
Recent advances in human cognitive neuroscience show great promise in extending our understanding of the neural basis of memory development. We briefly review the current state of knowledge, highlighting that most work has focused on describing the neural correlates of memory in cross-sectional studies. We then delineate three examples of the application of innovative methods in addressing questions that go beyond description, towards a mechanistic understanding of memory development.
View Article and Find Full Text PDFThe present fMRI study tested predictions of the evolution-of-syntax framework which analyzes certain structures as remnants ("fossils") of a non-hierarchical (non-recursive) proto-syntactic stage in the evolution of language (Progovac, 2015, 2016). We hypothesized that processing of these structures, in comparison to more modern hierarchical structures, will show less activation in the brain regions that are part of the syntactic network, including Broca's area (BA 44 and 45) and the basal ganglia, i.e.
View Article and Find Full Text PDFMemory functioning undergoes dynamic changes between childhood and adulthood. Spontaneous use of elaborative strategies, which can enhance the recall of information, expands with age and contributes to age-associated improvement in memory functioning. Findings from lesion and neuroimaging studies suggest that the ability to use elaborative strategies is dependent upon intact functioning of the prefrontal cortex (PFC), particularly the dorsolateral PFC region.
View Article and Find Full Text PDFWe address the puzzle of "unity in diversity" in human languages by advocating the (minimal) common denominator for the diverse expressions of transitivity across human languages, consistent with the view that early in language evolution there was a modest beginning for syntax and that this beginning provided the foundation for the further elaboration of syntactic complexity. This study reports the results of a functional MRI experiment investigating differential patterns of brain activation during processing of sentences with minimal versus fuller syntactic structures. These structural layers have been postulated to represent different stages in the evolution of syntax, potentially engaging different brain networks.
View Article and Find Full Text PDF