Publications by authors named "Noa Nambu"

Cavity-free lasing in atmospheric air has stimulated intense research toward a fundamental understanding of underlying physical mechanisms. In this Letter, we identify a new mechanism-a third-harmonic photon mediated resonant energy transfer pathway leading to population inversion in argon via an initial three-photon excitation of nitrogen molecules irradiated by intense 261 nm pulses-that enables bidirectional two-color cascaded lasing in atmospheric air. By making pump-probe measurements, we conclusively show that such cascaded lasing results from superfluorescence rather than amplified spontaneous emission.

View Article and Find Full Text PDF

Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.

View Article and Find Full Text PDF

In situ generation of a high-energy, high-current, spin-polarized electron beam is an outstanding scientific challenge to the development of plasma-based accelerators for high-energy colliders. In this Letter, we show how such a spin-polarized relativistic beam can be produced by ionization injection of electrons of certain atoms with a circularly polarized laser field into a beam-driven plasma wakefield accelerator, providing a much desired one-step solution to this challenge. Using time-dependent Schrödinger equation (TDSE) simulations, we show the propensity rule of spin-dependent ionization of xenon atoms can be reversed in the strong-field multiphoton regime compared with the non-adiabatic tunneling regime, leading to high total spin polarization.

View Article and Find Full Text PDF