Majorana zero modes are predicted to emerge in semiconductor/superconductor interfaces, such as InAs/Al. Majorana modes could be utilized for fault tolerant topological qubits. However, their realization is hindered by materials challenges.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
December 2024
Acta Crystallogr B Struct Sci Cryst Eng Mater
December 2024
A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern.
View Article and Find Full Text PDFDetoxification of heme in depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2024
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state.
View Article and Find Full Text PDFCrystal structure prediction (CSP) is performed for the energetic materials (EMs) LLM-105 and α-RDX, as well as the α and β conformational polymorphs of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), using the genetic algorithm (GA) code, GAtor, and its associated random structure generator, Genarris. Genarris and GAtor successfully generate the experimental structures of all targets. GAtor's symmetric crossover scheme, where the space group symmetries of parent structures are treated as genes inherited by offspring, is found to be particularly effective.
View Article and Find Full Text PDFIn organic light-emitting diodes (OLEDs), only 25% of electrically generated excitons are in a singlet state, , and the remaining 75% are in a triplet state, . In thermally activated delayed fluorescence (TADF) chromophores the transition from the nonradiative state to the radiative state can be thermally activated, which improves the efficiency of OLEDs. Chromophores with inverted energy ordering of and states, < , are superior to TADF chromophores, thanks to the absence of an energy barrier for the transition from to .
View Article and Find Full Text PDFThe efficiency of solar cells may be improved by using singlet fission (SF), in which one singlet exciton splits into two triplet excitons. SF occurs in molecular crystals. A molecule may crystallize in more than one form, a phenomenon known as polymorphism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as β-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor's local properties. A tunnel barrier inserted at the interface could resolve this issue.
View Article and Find Full Text PDFThe true molecular conformation and the crystal structure of benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene, 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene and 7,16-diphenylnaphtho[1,2,3,4-cde]helianthrene were determined ab initio by 3D electron diffraction. All three molecules are remarkable polycyclic aromatic hydrocarbons. The molecular conformation of two of these compounds could not be determined via classical spectroscopic methods due to the large size of the molecule and the occurrence of multiple and reciprocally connected aromatic rings.
View Article and Find Full Text PDFMolecular crystals of energetic materials (EMs) are denser than typical molecular crystals and are characterized by distinct intermolecular interactions between nitrogen-containing moieties. To assess the performance of dispersion-inclusive density functional theory (DFT) methods, we have compiled a data set of experimental sublimation enthalpies of 31 energetic materials. We evaluate the performance of three methods: the semilocal Perdew-Burke-Ernzerhof (PBE) functional coupled with the pairwise Tkatchenko-Scheffler (TS) dispersion correction, PBE with the many-body dispersion (MBD) method, and the PBE-based hybrid functional (PBE0) with MBD.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2022
At an interface between two materials physical properties and functionalities may be achieved, which would not exist in either material alone. Epitaxial inorganic interfaces are at the heart of semiconductor, spintronic, and quantum devices. First principles simulations based on density functional theory (DFT) can help elucidate the electronic and magnetic properties of interfaces and relate them to the structure and composition at the atomistic scale.
View Article and Find Full Text PDFWe present a new version of the Ogre open source Python package with the capability to perform structure prediction of epitaxial inorganic interfaces by lattice and surface matching. In the lattice matching step, a scan over combinations of substrate and film Miller indices is performed to identify the domain-matched interfaces with the lowest mismatch. Subsequently, surface matching is conducted by Bayesian optimization to find the optimal interfacial distance and in-plane registry between the substrate and the film.
View Article and Find Full Text PDFHerein we demonstrate the prowess of the 3D electron diffraction approach by unveiling the structure of terrylene, the third member in the series of peri-condensed naphthalene analogues, which has eluded structure determination for 65 years. The structure was determined by direct methods using electron diffraction data and corroborated by dispersion-inclusive density functional theory optimizations. Terrylene crystalizes in the monoclinic space group P2 /a, arranging in a sandwich-herringbone packing motif, similar to analogous compounds.
View Article and Find Full Text PDFWe present a machine learned model for predicting the volume of a homomolecular crystal based on the single-molecule structure, implemented in the open-source Python package for Molecular Volume Estimation (PyMoVE). The model is based on two descriptors: the volume enclosed by the packing-accessible surface and molecular topological fragments. To calculate the volume enclosed by the molecular surface, we have developed a new "projected marching cubes" algorithm.
View Article and Find Full Text PDFWe present Ogre, an open-source code for generating surface slab models from bulk molecular crystal structures. Ogre is written in Python and interfaces with the FHI-aims code to calculate surface energies at the level of density functional theory (DFT). The input of Ogre is the geometry of the bulk molecular crystal.
View Article and Find Full Text PDFSinglet fission (SF) is a photophysical process considered as a possible scheme to bypass the Shockley-Queisser limit by generating two triplet-state excitons from one high-energy photon. Polyacene crystals, such as tetracene and pentacene, have shown outstanding SF performance both theoretically and experimentally. However, their instability prevents them from being utilized in SF-based photovoltaic devices.
View Article and Find Full Text PDFThe goal of molecular crystal structure prediction (CSP) is to find all the plausible polymorphs for a given molecule. This requires performing global optimization over a high-dimensional search space. Genetic algorithms (GAs) perform global optimization by starting from an initial population of structures and generating new candidate structures by breeding the fittest structures in the population.
View Article and Find Full Text PDFWe present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle.
View Article and Find Full Text PDFSinglet fission (SF), the spontaneous down-conversion of a singlet exciton into two triplet excitons residing on neighboring molecules, is a promising route to improve organic photovoltaic (OPV) device efficiencies by harvesting two charge carriers from one photon. However, only a few materials have been discovered that exhibit intermolecular SF in the solid state, most of which are acene derivatives. Recently, there has been a growing interest in rylenes as potential SF materials.
View Article and Find Full Text PDFWe present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes.
View Article and Find Full Text PDFAn accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev.
View Article and Find Full Text PDF