Publications by authors named "Noa Malem-Shinitski"

Traditionally, Hawkes processes are used to model time-continuous point processes with history dependence. Here, we propose an extended model where the self-effects are of both excitatory and inhibitory types and follow a Gaussian Process. Whereas previous work either relies on a less flexible parameterization of the model, or requires a large amount of data, our formulation allows for both a flexible model and learning when data are scarce.

View Article and Find Full Text PDF

Understanding the decision process underlying gaze control is an important question in cognitive neuroscience with applications in diverse fields ranging from psychology to computer vision. The decision for choosing an upcoming saccade target can be framed as a selection process between two states: Should the observer further inspect the information near the current gaze position (local attention) or continue with exploration of other patches of the given scene (global attention)? Here we propose and investigate a mathematical model motivated by switching between these two attentional states during scene viewing. The model is derived from a minimal set of assumptions that generates realistic eye movement behavior.

View Article and Find Full Text PDF

Background: The study of learning in populations of subjects can provide insights into the changes that occur in the brain with aging, drug intervention, and psychiatric disease.

New Method: We introduce a separable two-dimensional (2D) random field (RF) model for analyzing binary response data acquired during the learning of object-reward associations across multiple days. The method can quantify the variability of performance within a day and across days, and can capture abrupt changes in learning.

View Article and Find Full Text PDF

A fundamental problem in neuroscience is to characterize the dynamics of spiking from the neurons in a circuit that is involved in learning about a stimulus or a contingency. A key limitation of current methods to analyze neural spiking data is the need to collapse neural activity over time or trials, which may cause the loss of information pertinent to understanding the function of a neuron or circuit. We introduce a new method that can determine not only the trial-to-trial dynamics that accompany the learning of a contingency by a neuron, but also the latency of this learning with respect to the onset of a conditioned stimulus.

View Article and Find Full Text PDF