COVID-19 patients are oftentimes over- or under-treated due to a deficit in predictive management tools. This study reports derivation of an algorithm that integrates the host levels of TRAIL, IP-10, and CRP into a single numeric score that is an early indicator of severe outcome for COVID-19 patients and can identify patients at-risk to deteriorate. 394 COVID-19 patients were eligible; 29% meeting a severe outcome (intensive care unit admission/non-invasive or invasive ventilation/death).
View Article and Find Full Text PDFThe objective was to evaluate the analytical performance of a new point-of-need platform for rapid and accurate measurement of a host-protein score that differentiates between bacterial and viral infection. The system comprises a dedicated test cartridge (MeMed BV®) and an analyzer (MeMed Key®). In each run, three host proteins (TRAIL, IP-10 and CRP) are measured quantitatively and a combinational score (0-100) computed that indicates the likelihood of Bacterial versus Viral infection (BV score).
View Article and Find Full Text PDFBackground: Treatment of severely ill COVID-19 patients requires simultaneous management of oxygenation and inflammation without compromising viral clearance. While multiple tools are available to aid oxygenation, data supporting immune biomarkers for monitoring the host-pathogen interaction across disease stages and for titrating immunomodulatory therapy is lacking.
Methods: In this single-center cohort study, we used an immunoassay platform that enables rapid and quantitative measurement of interferon γ-induced protein 10 (IP-10), a host protein involved in lung injury from virus-induced hyperinflammation.
Proc Natl Acad Sci U S A
November 2016
The ubiquitin-proteasome system and autophagy are the two main proteolytic systems involved in, among other functions, the maintenance of cell integrity by eliminating misfolded and damaged proteins and organelles. Both systems remove their targets after their conjugation with ubiquitin. An interesting, yet incompletely understood problem relates to the fate of the components of the two systems.
View Article and Find Full Text PDFInt J Biochem Cell Biol
October 2016
The living cell is an ever changing, responsive, and adaptive environment where proteins play key roles in all processes and functions. While the scientific community focused for a long time on the decoding of the information required for protein synthesis, little attention was paid to the mechanisms by which proteins are removed from the cell. We now realize that the timely and proper activity of proteins is regulated to a large extent by their degradation; that cellular coping with different physiological cues and stress conditions depends on different catabolic pathways; and that many pathological states result from improper protein breakdown.
View Article and Find Full Text PDFThe 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.
View Article and Find Full Text PDFSea water desalination provides fresh water that typically lacks minerals essential to human health and to agricultural productivity. Thus the rising proportion of desalinated sea water consumed by both the domestic and agricultural sectors constitutes a public health risk. Research on low-magnesium water irrigation showed that crops developed magnesium deficiency symptoms that could lead to plant death, and tomato yields were reduced by 10-15%.
View Article and Find Full Text PDFWe studied a potential drug delivery system comprising the hydrophobic anticancer drug paclitaxel entrapped within β-casein (β-CN) nanoparticles and its cytotoxicity to human gastric carcinoma cells. Paclitaxel was entrapped by stirring its dimethyl sulfoxide (DMSO) solution into PBS containing β-CN. Cryo-TEM analysis revealed drug nanocrystals, the growth of which was blocked by β-CN.
View Article and Find Full Text PDFThe purpose of the present paper was to analyze the efficiency of an abbreviated, albeit objective posturographic test as an indicator of fatigue. Posturography was measured in 10 healthy adults (age 18-33 years, male/female 7/3). Baseline posturographic measurements were taken for each subject.
View Article and Find Full Text PDF