Publications by authors named "Noa Afik"

The supercapacitor-diode (CAPode) is a device that integrates the functionality of an ionic diode with that of a conventional supercapacitor. The unique combination of energy storage and rectification properties in CAPodes is relevant for iontronics, alternate current rectifiers, logic operations, grid stabilization, and even biomedical applications. Here, we propose a novel aqueous-phase supercapattery-diode with excellent energy storage [total specific capacity () = 162 C g, energy density = 34 W h kg at 1.

View Article and Find Full Text PDF

Recent 3D-printing research showed the potential of using plant-protein-enriched inks to fabricate cultivated meat (CM) via agar-based support baths. However, for fabricating large, customized, structured, thick cellular constructs and further cultivation, improved 3D-printing capabilities and diffusion limit circumvention are warranted. The presented study harnesses advanced printing and thick tissue engineering concepts for such purpose.

View Article and Find Full Text PDF

Bimetallic alloy materials attract interest owing to their properties and stability compared to pure metals, especially alloys with nanoscale dimensions. Metal antimony (MSb) alloys, specifically NiSb, are widely used for charge storage applications due to their high stability. Most synthetic approaches to form these materials require drastic conditions (e.

View Article and Find Full Text PDF

An oil-based composite is employed to monitor the exposure to oxygen inside food packaging, aiming at evaluating the package integrity and the freshness of food. The composite is an oxygen-sensitive printable ink consisting of electrically conductive silver microflakes, embedded in a vegetable oil matrix. The sensitivity of the oil to oxygen is driven by its high content of unsaturated fatty acids that polymerize and shrink upon exposure to atmospheric oxygen.

View Article and Find Full Text PDF

The determination of food freshness along manufacturer-to-consumer transportation lines is a challenging problem that calls for cheap, simple, reliable, and nontoxic sensors inside food packaging. We present a novel approach for oxygen sensing in which the exposure time to oxygen-rather than the oxygen concentration per se-is monitored. We developed a nontoxic hybrid composite-based sensor consisting of graphite powder (conductive filler), clay (viscosity control filler) and linseed oil (the matrix).

View Article and Find Full Text PDF