All-inorganic halide perovskite nanocrystals are next-generation materials with excellent optical and semiconductor properties suitable for display applications. In this study, we introduce an optimized ultrasonication method for the high-capacity synthesis of highly luminescent inorganic perovskite nanocrystals. After the synthesis of CsPbBr with superior optical performance by ultrasonication method, halide anion exchange was performed to tune the stable emission wavelength over the entire visible range.
View Article and Find Full Text PDFThe methoxy-type silane coupling agents were synthesized via the modification of the hydrolyzable group and characterized to investigate the change in properties of silica/rubber composites based on the different silane coupling agent structures and the masterbatch fabrication methods. The prepared methoxy-type silane coupling agents exhibited higher reactivity towards hydrolysis compared to the conventional ethoxy-type one which led to the superior silanization to the silica filler surface modified for the reinforcement of styrene-butadiene rubber. The silica/rubber composites based on these methoxy-type silane coupling agents had the characteristics of more developed vulcanization and mechanical properties when fabricated as masterbatch products for tread materials of automobile tire surfaces.
View Article and Find Full Text PDFAlthough the multiwalled carbon nanotube (MWNT) is a promising material for use in the production of high electrical conductivity (σ) polymer nanocomposites, its tendency to aggregate and distribute randomly in a polymer matrix is a problematic issue. In the current study, we developed a highly conductive and monoclinically aligned MWNT-polyamide 6 (PA) nanocomposite containing interfacing flavin moieties. In this system, the flavin mononucleotide (FMN) initially serves as a noncovalent aqueous surfactant for individualizing MWNTs in the form of FMN-wrapped MWNTs (FMN-MWNT), and then partially decomposed FMN (dFMN) induces crystallization of the PA on the MWNTs.
View Article and Find Full Text PDFHalloysite nanotubes (HNTs), which are natural nanomaterials, have a hollow tubular structure with about 15 nm inner and 50 nm outer diameters. Because of their tubular shape, HNTs loaded with various materials have been investigated as functional nanocapsules. In this study, thyme essential oil (TO) was encapsulated successfully in HNTs using vacuum pulling methods, followed by end-capping or a layer-by-layer surface coating process for complete encapsulation.
View Article and Find Full Text PDFThe aims of this study were to develop insect-proof halloysite nanotubes (HNTs) and apply the HNTs to a low-density polyethylene (LDPE) film that will prevent Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), commonly known as Indian mealmoth, from infesting the food. Clove bud oil (CO), an insect repellent, was encapsulated into HNTs with polyethylenimine (PEI) to bring about controlled release of CO. Chemical composition and insecticidal effect of CO were examined.
View Article and Find Full Text PDFWe have characterized and evaluated changes in graphene oxide (GO) induced by means of freeze-drying. In order to evaluate these changes, we investigated the effects of freeze-drying and chemical reduction processes on the structure, morphology, chemical composition, and Raman properties of GO and reduced GO. The freeze-dried GO had a pore structure, maintaining a pored morphology even after thermal annealing.
View Article and Find Full Text PDFOstwald ripening is an evolutionary mechanism that results in micro-scale carbon spheres from nano-scale spheres. Vapor-phase carbon elements from small carbon nanoparticles are transported to the surface of submicron-scale carbon spheres, eventually leading to their evolution to micro-scale spheres via well-known growth mechanisms, including the layer-by-layer, island, and mixed growth modes. The results obtained from this work will pave the way to the disclosure of the evolutionary mechanism of micro-scale carbon spheres and open a new avenue for practical applications.
View Article and Find Full Text PDFCatalyst-free graphene nanosheets without substrates were synthesized using pure solid carbon sources of multiwalled carbon nanotubes (MWCNTs) and a spark plasma sintering (SPS) process. Single and few-hundred-nanometer graphene nanosheets were formed from gas-phase carbon atoms which were directly evaporated from MWCNTs at a local high temperature.
View Article and Find Full Text PDF