A few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention.
View Article and Find Full Text PDFWhole-brain intrinsic activity as detected by resting-state fMRI can be summarized by three primary spatiotemporal patterns. These patterns have been shown to change with different brain states, especially arousal. The noradrenergic locus coeruleus (LC) is a key node in arousal circuits and has extensive projections throughout the brain, giving it neuromodulatory influence over the coordinated activity of structurally separated regions.
View Article and Find Full Text PDFA few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention.
View Article and Find Full Text PDFUnlabelled: One prominent brain dynamic process detected in functional neuroimaging data is large-scale quasi-periodic patterns (QPPs) which display spatiotemporal propagations along brain cortical gradients. QPP associates with the infraslow neural activity related to attention and arousal fluctuations and has been identified in both resting and task-evoked brains across various species. Several QPP detection and analysis tools were developed for distinct applications with study-specific parameter methods.
View Article and Find Full Text PDFPurpose: In resting-state fMRI (rs-fMRI), the global signal average captures widespread fluctuations related to unwanted sources of variance such as motion and respiration, as well as widespread neural activity; however, relative contributions of neural and non-neural sources to the global signal remain poorly understood. This study sought to tackle this problem through the comparison of the BOLD global signal to an adjacent non-brain tissue signal, where neural activity was absent, from the same rs-fMRI scan obtained from anesthetized rats. In this dataset, motion was minimal and ventilation was phase-locked to image acquisition to minimize respiratory fluctuations.
View Article and Find Full Text PDFResting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity.
View Article and Find Full Text PDF