Drug treatment remains the most effective global approach to managing and preventing tuberculosis. This work focuses on formulating and evaluating an optimized polyvinyl alcohol-polyethylene glycol based orodispersible strip containing isoniazid, a first-line anti-tubercular agent. A solvent casting method guided through a Taguchi experimental design was employed in the fabrication, optimization and characterization of the orodispersible strip.
View Article and Find Full Text PDFTo date, effective treatment, prophylaxis, and control of tuberculosis (TB) infection is mainly dependent on the use of drugs. However, patient noncompliance with prescribed anti-TB treatment schemes remains a major problem confronting successful pharmacotherapeutic outcomes. Thus, the development of alternative delivery systems that can improve adherence for the existing anti-TB bioactives has been intensified in recent times.
View Article and Find Full Text PDFMolecular dynamics (MD) simulations of the charging of Li2MnO3 reveal that the reason nanocrystalline-Li2MnO3 is electrochemically active, in contrast to the parent bulk-Li2MnO3, is because in the nanomaterial the tunnels, in which the Li ions reside, are held apart by Mn ions, which act as a pseudo 'point defect scaffold'. The Li ions are then able to diffuse, via a vacancy driven mechanism, throughout the nanomaterial in all spatial dimensions while the 'Mn defect scaffold' maintains the structural integrity of the layered structure during charging. Our findings reveal that oxides, which comprise cation disorder, can be potential candidates for electrodes in rechargeable Li-ion batteries.
View Article and Find Full Text PDF