The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state.
View Article and Find Full Text PDFNeuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) is known to play an important role in reward processing. The rats conditioned to intra-cranial self-stimulation (ICSS) showed massive upregulation of CART protein and mRNA in the vicinity of the electrode implanted to deliver the electric current directly at the lateral hypothalamus (LH)-medial forebrain bundle (MFB) area. However, the underlying mechanisms leading to the upregulation of CART in ICSS animals remain elusive.
View Article and Find Full Text PDFAlthough the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats.
View Article and Find Full Text PDFThe role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area.
View Article and Find Full Text PDFThe inability to extinguish learned fear is a hallmark of trauma- and stress-related disorders. A form of inhibitory learning called fear extinction is an effective way to treat these disorders. However, the neurobiology of fear extinction has not been clarified.
View Article and Find Full Text PDFStrategies drawn at understanding the functional attributes of specific neural circuits often necessitate electrical stimulation and pharmacological manipulation at the same anatomical site. We describe a simple, inexpensive and reliable method to fabricate a bipolar electrode-cannula assembly for delivery of electric pulses and administration of neuroactive agents at the same site in the rat brain. The assembly consisting of a guide cannula, dummy cannula, internal cannula and bipolar electrode was fabricated using syringe needles, wires and simple electronic components.
View Article and Find Full Text PDFNeuroadaptations in neurocircuitry of reward memories govern the persistent and compulsive behaviors. The study of the role of hippocampus in processing of reward memory and its retrieval is critical to our understanding of addiction and relapse. The aim of this study is to probe the epigenetic mechanisms underlying reward memory in the frame of dentate gyrus (DG).
View Article and Find Full Text PDFCoincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory.
View Article and Find Full Text PDFNeuropeptide cocaine- and amphetamine-regulated transcript (CART) is known to influence the activity of the canonical mesolimbic dopaminergic pathway and modulate reward seeking behaviour. CART neurons of the lateral hypothalamus (LH) send afferents to the ventral tegmental area (VTA) and paraventricular thalamic nucleus (PVT) and these nuclei, in turn, send secondary projections to nucleus accumbens. We try to dissect the precise sites of CART's action in these circuits in promoting reward.
View Article and Find Full Text PDFReward induces activity-dependant gene expression and synaptic plasticity-related changes. Lysine-specific histone demethylase 1 (LSD1), a key enzyme driving histone modifications, regulates transcription in neural circuits of memory and emotional behavior. Herein, we focus on the role of LSD1 in modulating the expression of brain derived neurotrophic factor (BDNF), the master regulator of synaptic plasticity, in the lateral hypothalamus-medial forebrain bundle (LH-MFB) circuit during positive reinforcement.
View Article and Find Full Text PDFBackground: Anger is one of the primary emotions that profoundly impacts our daily life. Although the neural basis of anger needs to be explored on high priority, the field has not sufficiently advanced, perhaps due to the lack of a suitable animal model.
New Method: We fabricated arenas in which the hungry rat can see and smell food but can not consume it.
Apart from reproduction, estrogen influences a multitude of processes. Increase in estrogen levels in women is known to promote reward probably mediated via the melanocortin and dopamine systems. Reduced estrogen in post-menopausal women attenuates reward, evoking the need for stimulation with greater rewarding salience.
View Article and Find Full Text PDFReward deficit, expressed as anhedonia, is one of the major symptoms associated with neuropsychiatric disorders, but the underlying maladaptations have not been understood. Herein, we test the hypothesis that the neuropeptide cocaine- and amphetamine-regulated transcript (CART) may participate in the process. The study is justified since the peptide is a major player in inducing satiety and also processing of reward.
View Article and Find Full Text PDFPharmacol Biochem Behav
January 2020
Exposure of NMDA receptor antagonists during developmental stages leads to behavioral consequences like attention deficit hyperactivity disorder (ADHD). However, the underlying molecular mechanisms have remained poorly understood. Herein, we studied the phosphorylated Akt (pAkt) and caspase-3, the key regulators of neuronal cell survival/death, as the probable downstream targets of MK-801 often used to engender ADHD-like condition.
View Article and Find Full Text PDFWhile insulin secreted from pancreas plays a pivotal role in the control of glucose homeostasis, it also interacts with hypothalamic sites and negatively influences the energy balance. The present study was undertaken to reveal the functional interaction between cocaine- and amphetamine-regulated transcript (CART), a well-known anorexic peptide, and insulin within the framework of hypothalamus in the regulation of feeding behavior and body weight. Insulin was administered daily by intracerebroventricular (icv) route, alone or in combination with CART (icv) for a period of seven days.
View Article and Find Full Text PDFEthanol ingestion by a mother during pregnancy entails adverse consequences for her offspring. In this study, adult female rats were given access to ethanol from 8 days prior to mating to post-parturition weaning, and the effects on her offspring were evaluated. We investigated changes in the cocaine- and amphetamine-regulated transcript peptide (CART), a neuropeptide involved in the central effects of ethanol in the frame of reward and stress processing circuits.
View Article and Find Full Text PDFAlthough olanzapine is highly efficacious and most widely used second generation antipsychotic drug, the success of treatment has been hampered by its propensity to induce weight gain. While the underlying neuronal mechanisms are unclear, their elucidation may help to target alternative pathways regulating energy balance. The present study was undertaken to define the role of cocaine- and amphetamine-regulated transcript (CART), a well-known anorexic peptide, in olanzapine-induced hyperphagia and body weight gain in female rats.
View Article and Find Full Text PDFAlthough the role of cocaine- and amphetamine-regulated transcript peptide (CART) in modulating the mesolimbic reward pathway has been suggested, underlying cellular mechanisms have not been elucidated. Herein, we investigate the involvement of G dependent protein kinase A (PKA)/extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) signaling in CART induced reward behavior. The rat was implanted with a stimulating electrode targeted at the lateral hypothalamus (LH)-medial forebrain bundle (MFB) and conditioned to intracranial self-stimulation (ICSS) in an operant chamber.
View Article and Find Full Text PDFExaggerated thoughts, diminished mood and impaired cognition are the hallmarks of the schizophrenia-like condition. These symptoms are attributed to the dysregulation of dopamine and glutamate signaling in the brain. Since cocaine- and amphetamine-regulated transcript peptide (CART) modulates actions of dopamine as well as glutamate, we tested the role of this peptide in MK-801-induced schizophrenic dementia-like condition.
View Article and Find Full Text PDFAlthough chronic nicotine administration does not affect memory, its withdrawal causes massive cognitive deficits. The underlying mechanisms, however, have not been understood. We test the role of cocaine- and amphetamine-regulated transcript peptide (CART), a neuropeptide known for its procognitive properties, in this process.
View Article and Find Full Text PDFParaventricular thalamic nucleus (PVT) serves as a transit node processing food and drug-associated reward information, but its afferents and efferents have not been fully defined. We test the hypothesis that the CART neurons in the lateral hypothalamus (LH) project to the PVT neurons, which in turn communicate via the glutamatergic fibers with the nucleus accumbens shell (AcbSh), the canonical site for reward. Rats conditioned to self-stimulate via an electrode in the right LH-medial forebrain bundle were used.
View Article and Find Full Text PDFRats with electrode implanted in the lateral hypothalamus (LH)-medial forebrain bundle (MFB) area actively engage in intracranial self-stimulation (ICSS). However, the neuronal substrate that translates the electrical pulses into the neural signals, and integrates the information with mesolimbic reward system, has remained elusive. We test the hypothesis that the cocaine- and amphetamine-regulated transcript (CART) neurons in the LH-MFB area may support this function.
View Article and Find Full Text PDFAlthough cocaine- and amphetamine-regulated transcript peptide (CART) is detected in several cortical and subcortical areas, its role in higher functions has been largely ignored. We examined the significance of CART in memory formation and tested if the downstream actions of CART involve N-methyl-d-aspartate (NMDA) activated extra-cellular signal-regulated kinase (ERK). Newly formed memory was evaluated using novel object recognition test consisting of familiarization (T1) and choice trials (T2).
View Article and Find Full Text PDFDepression is a major comorbidity factor of diabetes and the outcome of one disorder influences the other. Our aim is to scrutinize the link between the two, if any. Since neuropeptide Y (NPY) system plays an important role in regulating central glucose sensing mechanisms, and also depression-related behavior, we test the involvement of NPY in the modulation of depression in type 2 diabetic mice.
View Article and Find Full Text PDFParkinson's disease (PD) is an age-related disorder characterized by a progressive degeneration of dopaminergic neurons of substantia nigra (SN). The neuropeptide cocaine- and amphetamine-regulated transcript (CART) is known to closely interact with the dopamine system and regulate psychomotor activity. We screened the effectiveness of CART in reversing the symptoms of PD in a rat model.
View Article and Find Full Text PDF