Single cell sequencing of γδ-T cells from human blood and tumours revealed novel markers of subtypes with distinct effector functions and a subtype that is associated with favourable clinical outcome.
View Article and Find Full Text PDFThere is a growing body of evidence that cancer causes systemic changes. These influences are most evident in the bone marrow and the blood, particularly in the myeloid compartment. Here, we show that there is an increase in the number of bone marrow, circulating and splenic monocytes by using mouse models of breast cancer caused by the mammary epithelial expression of the polyoma middle T antigen.
View Article and Find Full Text PDFThe association of increased levels of tumour-infiltrating gamma-delta (γδ) T cells with favorable prognosis across many cancer types and their ability to recognize stress antigens in an MHC unrestricted manner has led to an increased interest in exploiting them for cancer immunotherapy. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood γδ T cells from healthy adult donors and from fresh tumour biopsies of breast cancer patients. We identified five γδ T cells subtypes in blood and three subtypes of γδ T cells in breast tumour.
View Article and Find Full Text PDFThe power of single-cell RNA sequencing (scRNA-seq) stems from its ability to uncover cell type-dependent phenotypes, which rests on the accuracy of cell type identification. However, resolving cell types within and, thus, comparison of scRNA-seq data across conditions is challenging owing to technical factors such as sparsity, low number of cells, and batch effect. To address these challenges, we developed scID (Single Cell IDentification), which uses the Fisher's Linear Discriminant Analysis-like framework to identify transcriptionally related cell types between scRNA-seq datasets.
View Article and Find Full Text PDFThe PTEN tumor suppressor is the second most commonly inactivated gene across cancer types. While it's role in PI3K/AKT and DNA damage pathways are clear, increasing evidences suggest that PTEN may also promote anti-tumor immunity. PTEN-deficient tumors are characterized by (i) reduced levels of cytotoxic T cells, helper T cells and NK cells, (ii) elevated pro-oncogenic inflammatory cytokines like CCL2 and (iii) increased levels of immunosuppressive cells such as MDSCs and Tregs.
View Article and Find Full Text PDFThe DNA damage response (DDR) associated post-translational modifications recruit chromatin remodelers, signaling proteins such as 53BP1 and repair factors to chromatin flanking DNA double strand breaks (DSBs) to promote its repair. Although localization of both RNF168 ubiquitin ligase and SET8 methyltransferase at DSBs is essential for 53BP1's recruitment to DSBs, it is unclear if they do so via the same pathways. Here we report that RNF168 mediates SET8's recruitment to DSBs.
View Article and Find Full Text PDFBackground: An important goal of cancer genomics is to identify systematically cancer-causing mutations. A common approach is to identify sites with high ratios of non-synonymous to synonymous mutations; however, if synonymous mutations are under purifying selection, this methodology leads to identification of false-positive mutations. Here, using synonymous somatic mutations (SSMs) identified in over 4000 tumours across 15 different cancer types, we sought to test this assumption by focusing on coding regions required for splicing.
View Article and Find Full Text PDFHomology-directed repair (HDR) maintains genomic integrity by eliminating lesions such as DNA double-strand breaks (DSBs), interstrand crosslinks (ICLs) and stalled replication forks and thus a deficiency in HDR is associated with genomic instability and cancer predisposition. The mechanism of HDR is best understood and most rigorously characterized in yeast. The inactivation of the fungal radiation sensitive 52 (RAD52) gene, which has both recombination mediator and single-strand annealing (SSA) activities in vitro, leads to severe HDR defects in vivo.
View Article and Find Full Text PDFThe generation of induced pluripotent stem cells (iPSC) from adult somatic cells is one of the most remarkable discoveries in recent decades. However, several works have reported evidence of genomic instability in iPSC, raising concerns on their biomedical use. The reasons behind the genomic instability observed in iPSC remain mostly unknown.
View Article and Find Full Text PDFThe conversion of somatic cells into pluripotent stem cells via overexpression of reprogramming factors involves epigenetic remodeling. DNA methylation at a significant proportion of CpG sites in induced pluripotent stem cells (iPSCs) differs from that of embryonic stem cells (ESCs). Whether different sets of reprogramming factors influence the type and extent of aberrant DNA methylation in iPSCs differently remains unknown.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) activate a signaling pathway known as the DNA damage response (DDR) which via protein-protein interactions and post-translational modifications recruit signaling proteins, such as 53BP1, to chromatin flanking the lesion. Depletion of the SET8 methyltransferase prevents accumulation of 53BP1 at DSBs; however, this phenotype has been attributed to the role of SET8 in generating H4K20 methylation across the genome, which is required for 53BP1 binding to chromatin, prior to DNA damage. Here, we report that SET8 acts directly at DSBs during the DNA damage response (DDR).
View Article and Find Full Text PDFSomatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using oncogenic transcription factors. However, this method leads to genetic aberrations in iPSCs via unknown mechanisms, which may limit their clinical use. Here, we demonstrate that the supplementation of growth media with antioxidants reduces the genome instability of cells transduced with the reprogramming factors.
View Article and Find Full Text PDFArch Otolaryngol Head Neck Surg
August 2012
Objective: To conduct high-throughput mutational analysis in 6 commonly used head and neck cancer cell lines. Comprehensive mutation analysis of primary head and neck squamous cell carcinoma (HNSCC) tumors has recently been reported, and mutations in the NOTCH receptors, TP53 and CDKN2A, were key findings. Established cell lines are valuable tools to study cancer in vitro.
View Article and Find Full Text PDFMutations in human induced pluripotent stem cells (iPSCs) pose a risk for their clinical use due to preferential reprogramming of mutated founder cell and selection of mutations during maintenance of iPSCs in cell culture. It is unknown, however, if mutations in iPSCs are due to stress associated with oncogene expression during reprogramming. We performed whole exome sequencing of human foreskin fibroblasts and their derived iPSCs at two different passages.
View Article and Find Full Text PDFThe mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells.
View Article and Find Full Text PDFPrevious studies in Saccharomyces cerevisiae have demonstrated that cryptic promoters within coding regions activate transcription in particular mutants. We have performed a comprehensive analysis of cryptic transcription in order to identify factors that normally repress cryptic promoters, to determine the amount of cryptic transcription genome-wide, and to study the potential for expression of genetic information by cryptic transcription. Our results show that a large number of factors that control chromatin structure and transcription are required to repress cryptic transcription from at least 1,000 locations across the S.
View Article and Find Full Text PDFCoding sequence evolution was once thought to be the result of selection on optimal protein function alone. Selection can, however, also act at the RNA level, for example, to facilitate rapid translation or ensure correct splicing. Here, we ask whether the way DNA works also imposes constraints on coding sequence evolution.
View Article and Find Full Text PDFIn diverse organisms, neighbouring genes in the genome tend to be positively coexpressed more than expected by chance. When the similarity of transcription regulation is controlled for, adjacent genes have much higher coexpression rates than unlinked genes, supporting a role for chromatin modelling. Consequently, many incidences of low-to-moderate level coexpression of linked genes might well be spurious rather than an indication of functional coordination.
View Article and Find Full Text PDFThe distribution of genes on eukaryotic chromosomes is nonrandom, but the reasons behind this are not well understood. The commonly observed clustering of essential genes is a case in point. Here we model and test a new hypothesis.
View Article and Find Full Text PDFAnalysis of multi-validated protein interaction data reveals networks with greater interconnectivity than the more segregated structures seen in previously available data. To help visualize this, the authors draw comparisons between continuous stratus clouds and altocumulus clouds.
View Article and Find Full Text PDFSystems biology approaches can reveal intermediary levels of organization between genotype and phenotype that often underlie biological phenomena such as polygenic effects and protein dispensability. An important conceptualization is the module, which is loosely defined as a cohort of proteins that perform a dedicated cellular task. Based on a computational analysis of limited interaction datasets in the budding yeast Saccharomyces cerevisiae, it has been suggested that the global protein interaction network is segregated such that highly connected proteins, called hubs, tend not to link to each other.
View Article and Find Full Text PDFIt has been claimed that proteins with more interaction partners (hubs) are both physiologically more important (i.e., less dispensable) and, owing to an assumed high density of binding sites, slow evolving.
View Article and Find Full Text PDFBackground: The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference.
View Article and Find Full Text PDFOf the many important signaling events that take place on the surface of a mammalian cell, activation of signal transduction pathways via interactions of cell surface receptors is one of the most important. Evidence suggests that cell surface proteins are not as freely diffusible as implied by the classic fluid mosaic model and that their confinement to membrane domains is regulated. It is unknown whether these dynamic localization mechanisms function to enhance signal transduction activation rate or to minimize cross talk among pathways that share common intermediates.
View Article and Find Full Text PDFCa2+ and diacylglycerol-regulated protein kinase Cs (PKCs; conventional PKC isoforms, such as PKCgamma) are multifunctional signaling molecules that undergo reversible plasma membrane translocation as part of their mechanism of activation. In this article, we investigate PKCgamma translocation in hippocampal neurons and show that electrical or glutamate stimulation leads to a striking enrichment of PKCgamma in synaptic spines and dendritic branches. Translocation into spines and branches was delayed when compared with the soma plasma membrane, and PKCgamma remained in these structures for a prolonged period after the response in the soma ceased.
View Article and Find Full Text PDF