Int J Biol Macromol
August 2024
In the current study, two sets of compounds: (E)-1-(2-(4-substitutedphenyl)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium derivatives (3a-3e); and (E)-3-(substitutedbenzoyl)-7-((hydroxyimino)methyl)-2-substitutedindolizine-1-carboxylate derivatives (5a-5j), were synthesized and biologically evaluated against two strains of Mycobacterial tuberculosis (ATCC 25177) and multi-drug resistant (MDR) strains. Further, they were also tested in vitro against the mycobacterial InhA enzyme. The in vitro results showed excellent inhibitory activities against both MTB strains and compounds 5a-5j were found to be more potent, and their MIC values ranged from 5 to 16 μg/mL and 16-64 μg/mL against the M.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2024
According to WHO, in 2021, there was an estimation of 247 million malaria cases from 84 malaria-endemic countries. Globally an estimated count of 2 billion malaria cases and 11.7 million deaths due to malaria were recorded in the past two decades.
View Article and Find Full Text PDFMalaria is one of the most known vector-borne diseases caused by female mosquito bites. According to WHO, about 247 million cases of malaria and 619,000 deaths were estimated worldwide in 2021, of which 95% of the cases and 96% of deaths occurred in the African region. Sadly, about 80% of all malaria deaths were of children under five years old.
View Article and Find Full Text PDFCancer is imposing a global health burden because of the steady increase in new cases. Moreover, current anticancer therapeutics are associated with many drawbacks, mainly the emergence of resistance and the severe adverse effects. Therefore, there is a continuous need for developing new anticancer agents with novel mechanisms of action and lower side effects.
View Article and Find Full Text PDFBackground And Purpose: Several pharmaceutical formulations were investigated to improve the solubility of 5-fluorouracil to enhance bioavailability and therapeutic efficacy. This study aimed to examine the potential use of cyclodextrin-based nanosponges for the incorporation of 5-fluorouracil and to investigate the use of different crosslinking agents on the properties of the resulting drug carrier. 5-Fluorouracil complexation with β-cyclodextrin was also studied to explain the unexpected results of weak 5-fluorouracil incorporation in nanosponge.
View Article and Find Full Text PDFAAPS PharmSciTech
August 2022
Cyclodextrin-based nanosponges are widely investigated for several applications and are considered potential drug carriers. The method of nanosponges preparation involves the use of chemical cross-linking agents where the properties of Nanosponges can be affected. This study compared the resulting differences in the final nanosponges' properties using carbonate and dianhydride crosslinkers.
View Article and Find Full Text PDFA series of 2,3-dihydroquinazolin-4(1)-one derivatives (-) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) (MTB) strains. Compounds and with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound with an imidazole ring at the 2-position of the dihydroquinazolin-4(1)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively.
View Article and Find Full Text PDFMolecules
April 2022
Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito , a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion.
View Article and Find Full Text PDFIn a previous report, we described the discovery of (E)-5-((8-hydroxyquinolin-5-yl)diazenyl)-2-methylbenzenesulfonamide as a potent inhibitor of GLO-I enzyme with IC of 1.28 ± 0.12 μM.
View Article and Find Full Text PDFThe TOPK enzyme (also known as PBK) is a serine-threonine protein kinase that is rarely detected in normal tissues yet is found to be overexpressed and activated in a variety of cancers such as lung, colorectal, breast, and esophageal cancer. Its prevalence in cancerous cells is associated with their poor prognosis and responsiveness to treatment. This enzyme plays a vital role in cell division, specifically in regulating cytokinesis.
View Article and Find Full Text PDFA series of 1,2,3-trisubstituted indolizines (, and ) were screened for whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) (MTB) strains. Compounds , , and were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64 µg/mL). docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines.
View Article and Find Full Text PDFThe alarming increase in multi- and extensively drug-resistant (MDR and XDR) strains of (MTB) has triggered the scientific community to search for novel, effective, and safer therapeutics. To this end, a series of 3,5-disubstituted-1,2,4-oxadiazole derivatives () were tested against H37Rv, MDR and XDR strains of MTB. Of which, compound with para-trifluorophenyl substituted oxadiazole showed excellent activity against the susceptible H37Rv and MDR-MTB strain with a MIC values of 8 and 16 µg/ml, respectively.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2, SARS-CoV-2, arose at the end of 2019 as a zoonotic virus, which is the causative agent of the novel coronavirus outbreak COVID-19. Without any clear indications of abatement, the disease has become a major healthcare threat across the globe, owing to prolonged incubation period, high prevalence, and absence of existing drugs or vaccines. Development of COVID-19 vaccine is being considered as the most efficient strategy to curtail the ongoing pandemic.
View Article and Find Full Text PDFWith the current outbreak caused by SARS-CoV-2, vaccination is acclaimed as a public health care priority. Rapid genetic sequencing of SARS-CoV-2 has triggered the scientific community to search for effective vaccines. Collaborative approaches from research institutes and biotech companies have acknowledged the use of viral proteins as potential vaccine candidates against COVID-19.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor and invade the human cells to cause COVID-19-related pneumonia. Despite an emphasis on respiratory complications, the evidence of neurological manifestations of SARS-CoV-2 infection is rapidly growing, which is substantially contributing to morbidity and mortality. The neurological disorders associated with COVID-19 may have several pathophysiological underpinnings, which are yet to be explored.
View Article and Find Full Text PDFHuman tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles.
View Article and Find Full Text PDFThe widespread of the COVID-19 disease, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), had severely affected the entire world. Unfortunately, no successful vaccines or antiviral drugs are currently available which leaves the scientific community under huge pressure to tackle this pandemic. Among the identified promising druggable targets, specific to this virus, is the main protease (M) enzyme, which is vital for viral replication, transcription and packaging within the host cells.
View Article and Find Full Text PDFThe glyoxalase system, particularly glyoxalase-I (GLO-I), has been approved as a potential target for cancer treatment. In this study, a set of structurally diverse polyphenolic natural compounds were investigated as potential GLO-I inhibitors. Ellagic acid was found, computationally and experimentally, to be the most potent GLO-I inhibitor among the tested compounds which showed an IC50 of 0.
View Article and Find Full Text PDFThe enzyme glyoxalase-I (Glo-I) is an essential therapeutic target in cancer treatment. Significant efforts have been made to discover competitive inhibitors of Glo-I as potential anticancer agents. Herein, we report the synthesis of a series of diazenylbenzenesulfonamide derivatives, their in vitro evaluation against Glo-I and the resulting structure-activity relationships.
View Article and Find Full Text PDFLeukotriene B4 (LTB4) is a potent, proinflammatory lipid mediator implicated in the pathologies of an array of inflammatory diseases and cancer. The biosynthesis of LTB4 is regulated by the leukotriene A4 hydrolase (LTAH). Compounds capable of limiting the formation of LTB4, through selective inhibition of LTAH, are expected to provide potent anti-inflammatory and anti-cancer agents.
View Article and Find Full Text PDFThe glyoxalase-I (GLO-I) enzyme, which is the initial enzyme of the glyoxalase system that is responsible for the detoxification of cytotoxic α-ketoaldehydes, such as methylglyoxal, has been approved as a valid target in cancer therapy. Overexpression of GLO-I has been observed in several types of carcinomas, including breast, colorectal, prostate, and bladder cancer. In this work we aimed to identify potential GLO-I inhibitors via employing different structure-based drug design techniques including structure-based poly-pharmacophore modelling, virtual screening, and molecular docking.
View Article and Find Full Text PDFThe lysine specific demethylase enzyme LSD1 regulates the function of histone proteins in cells through the demethylation of specific lysine amino acid residues. Being overexpressed in various cancers, LSD1 is considered as a validated target for cancer treatment. In this study, we describe the discovery of novel LSD1 inhibitors using computational fragment-based drug design approach.
View Article and Find Full Text PDFSMYD3 enzyme is overexpressed in many types of cancer and its role in the methylation of cytoplasmic mitogen-activated protein kinase, kinase kinase 2 (MAP3K2), has been linked to promotion of Kras-driven cancer in pancreatic ductal and lung adenocarcinoma. A hybrid 3D structure-based pharmacophore model was generated using crystal structures of SMYD3 complexed with sinefungin and was used to search for potential SMYD3 inhibitors through virtual screening of the Maybridge database. The retrieved hits from screening were further docked into the binding site of SMYD3 using CDOCKER docking algorithms.
View Article and Find Full Text PDFAdenosine receptors (ARs) are transmembrane proteins that belong to the G protein-coupled receptors (GPCRs) superfamily and mediate the biological functions of adenosine. To date, four AR subtypes are known, namely A1, A2A, A2B and A3 that exhibit different signaling pathways, tissue localization, and mechanisms of activation. Moreover, the widespread ARs and their implication in numerous physiological and pathophysiological conditions had made them pivotal therapeutic targets for developing clinically effective agents.
View Article and Find Full Text PDF