Publications by authors named "Niyousha Rafiee Tehrani"

The present study aimed to investigate in vitro DNA transfection efficiency of three novel chitosan derivatives: thiolated trimethyl chitosan (TMC-Cys), methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan(MABCC) and thiolated trimethyl aminobenzyl chitosan(MABC-Cys). After polymer synthesis and characterization, nanoparticles were prepared using these polymers and their size, zeta potential and DNA condensing ability were measured. After that, cytotoxicity and transfection efficiency of nanocomplexes were carried out in three different cells.

View Article and Find Full Text PDF

Background: Despite years of experience and rigorous research, injectable insulin is the sole trusted treatment method to control the blood glucose level in diabetes type 1 patients, but injection of insulin is painful and poses a lot of stress to the patients, especially children, therefore, development of a non-injectable formulation of insulin is a major breakthrough in the history of medicine and pharmaceutical sciences.

Methods: In this study, a novel peptide grafted derivative of chitosan (CPP-g- chitosan) is synthesized and its potential for oral delivery of proteins and peptides is evaluated. Drug-loaded nanoparticles were developed from this derivative using ionic gelation method with application of sodium tripolyphosphate (TPP) as a cross-linking agent.

View Article and Find Full Text PDF
Article Synopsis
  • - This study focuses on creating and optimizing insulin nanoparticles using a specific statistical design (Box-Behnken) and a fabrication method (ionic gelation) involving a thiolated chitosan conjugate.
  • - The optimized nanoparticles, averaging 148nm in size, demonstrated effective drug loading into buccal films, with notable drug release properties assessed through in vitro studies, including FTIR analysis.
  • - Cell viability tests using an MTT assay confirmed that these nanoparticles and films are safe for cells and show promise as oral delivery systems for insulin.
View Article and Find Full Text PDF

A comprehensive model with all effective phenomena in drug release such as diffusion, swelling and erosion was considered. In this work, a mathematical model was developed to describe drug release from controlled release HPMC matrices as a favorable system in pharmaceutical industries. As a novel study, the impact of the MCC presence as a filler in tablet preparation process was considered in the mathematical model.

View Article and Find Full Text PDF

A simple and reproducible water-in-oil (W/O) nanoemulsion technique for making ultrasmall (<15 nm), monodispersed and water-dispersible nanoparticles (NPs) from chitosan (CS) is reported. The nano-sized (50 nm) water pools of the W/O nanoemulsion serve as "nano-containers and nano-reactors". The entrapped polymer chains of CS inside these "nano-reactors" are covalently cross-linked with the chains of polyethylene glycol (PEG), leading to rigidification and formation of NPs.

View Article and Find Full Text PDF

Chitosan is a natural mucoadhesive, biodegradable, biocompatible and nontoxic polymer which has been used in pharmaceutical industry for a lot of purposes such as dissolution enhancing, absorption enhancing, sustained releasing and protein, gene or drug delivery. Two major disadvantages of chitosan are poor solubility in physiological pH and low efficiency for protein and gene delivery. In this study thiolated methylated N-(4-N,N-dimethylaminobenzyl) chitosan was prepared for the first time in order to improve the solubility and delivery properties of chitosan.

View Article and Find Full Text PDF

Chitosan, as a biocompatible polymer, is very attractive for biomedical applications. Continues studies are performing for improving its physicochemical features in order to make it more suitable for such approaches. In this study, methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan (MABCC) was synthesized,as a new chitosan derivative, in three steps.

View Article and Find Full Text PDF