Publications by authors named "Niyati Bondale"

In human gliomas, the RTK/RAS/PI(3)K signaling pathway is nearly always altered. We present a model of experimental gliomagenesis that elucidates the contributions of genes involved in this pathway (PDGF-B ligand, HRAS-G12V, and AKT). We also examine the effect on gliomagenesis by the potential modifier gene, IDH1-R132H.

View Article and Find Full Text PDF

Following antigen recognition on target cells, effector T cells establish immunological synapses and secrete cytokines. It is thought that T cells secrete cytokines in one of two modes: either synaptically (i.e.

View Article and Find Full Text PDF

The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4(+) and CD8(+) T cells and that these T cells are necessary for transgene elimination.

View Article and Find Full Text PDF

CD8(+) T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8(+) T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ.

View Article and Find Full Text PDF

Soluble antigens diffuse out of the brain and can thus stimulate a systemic immune response, whereas particulate antigens (from infectious agents or tumor cells) remain within brain tissue, thus failing to stimulate a systemic immune response. Immune privilege describes how the immune system responds to particulate antigens localized selectively within the brain parenchyma. We believe this immune privilege is caused by the absence of antigen presenting dendritic cells from the brain.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform.

View Article and Find Full Text PDF

Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the "OFF" state, and expression should quickly reach therapeutic levels in the "ON" state.

View Article and Find Full Text PDF