, a globally important, N-fixing, and colony-forming cyanobacterium, employs multiple pathways for acquiring nutrients from air-borne dust, including active dust collection. Once concentrated within the colony core, dust can supply with nutrients. Recently, we reported a selectivity in particle collection enabling to center iron-rich minerals and optimize its nutrient utilization.
View Article and Find Full Text PDFDust is an important iron (Fe) source to the ocean, but its utilization by phytoplankton is constrained by rapid sinking and slow dissolution dust-bound iron (dust-Fe). Colonies of the globally important cyanobacterium, Trichodesmium, overcome these constraints by efficient dust capturing and active dust-Fe dissolution. In this study we examined the ability of Trichodesmium colonies to maximize their Fe supply from dust by selectively collecting Fe-rich particles.
View Article and Find Full Text PDFIron (Fe) bioavailability, as determined by its sources, sinks, solubility and speciation, places severe environmental constraints on microorganisms in aquatic environments. Cyanobacteria are a widespread group of aquatic, photosynthetic microorganisms with especially high iron requirements. While iron exists predominantly in particulate form, little is known about its bioavailability to cyanobacteria.
View Article and Find Full Text PDF