, the causal agent of Septoria leaf spot and stem canker, is responsible for mortality and yield loss in plantations. However, little is known about the mode of infection and the mechanisms of resistance in this pathosystem. To characterize these phenomena, microscopic, biochemical, and transcriptome comparisons were performed between leaves of moderately resistant and susceptible genotypes of inoculated with conidia.
View Article and Find Full Text PDFFusarium solani species complex (FSSC) 11 is the primary phylogenetic species of FSSC causing root rot in soybean in the north-central United States. A polymerase chain reaction (PCR)-based assay was developed to identify and differentiate FSSC 11 from the less aggressive FSSC 5 and other Fusarium and Pythium spp. associated with soybean roots.
View Article and Find Full Text PDFInvasive microbes causing diseases such as sudden oak death negatively affect ecosystems and economies around the world. The deployment of resistant genotypes for combating introduced diseases typically relies on breeding programs that can take decades to complete. To demonstrate how this process can be accelerated, we employed a genome-wide association mapping of 1,000 resequenced trees individually challenged with , an invasive fungal pathogen.
View Article and Find Full Text PDF