Publications by authors named "Nivet E"

The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB.

View Article and Find Full Text PDF

Apolipoprotein E4 (APOEε4) is the major allelic risk factor for late-onset sporadic Alzheimer's disease (sAD). Inflammation is increasingly considered as critical in sAD initiation and progression. Identifying brain molecular mechanisms that could bridge these two risk factors remain unelucidated.

View Article and Find Full Text PDF

Introduction: Several pediatric studies have demonstrated that therapy using a conventional insulin pump improves glycemic control and quality of life. At the beginning of this study, a new tubeless insulin pump, Omnipod®, had recently been marketed in France.

Objectives: Analyze the response of adolescents treated with multiple injections to the proposal to use this new medical device and compare both the quality of life and the glycemic control of adolescents according to their choice.

View Article and Find Full Text PDF

For some time, it has been accepted that the β-site APP cleaving enzyme 1 (BACE1) and the γ-secretase are two main players in the amyloidogenic processing of the β-amyloid precursor protein (APP). Recently, the membrane-type 5 matrix metalloproteinase (MT5-MMP/MMP-24), mainly expressed in the nervous system, has been highlighted as a new key player in APP-processing, able to stimulate amyloidogenesis and also to generate a neurotoxic APP derivative. In addition, the loss of MT5-MMP has been demonstrated to abrogate pathological hallmarks in a mouse model of Alzheimer's disease (AD), thus shedding light on MT5-MMP as an attractive new therapeutic target.

View Article and Find Full Text PDF

We previously discovered the implication of membrane-type 5-matrix metalloproteinase (MT5-MMP) in Alzheimer's disease (AD) pathogenesis. Here, we shed new light on pathogenic mechanisms by which MT5-MMP controls the processing of amyloid precursor protein (APP) and the fate of amyloid beta peptide (Aβ) as well as its precursor C99, and C83. We found in human embryonic kidney cells (HEK) carrying the APP Swedish familial mutation (HEKswe) that deleting the C-terminal non-catalytic domains of MT5-MMP hampered its ability to process APP and release the soluble 95 kDa form (sAPP95).

View Article and Find Full Text PDF

Autism spectrum disorders (ASD) are complex neurodevelopmental disorders with a very large number of risk loci detected in the genome. However, at best, each of them explains rare cases, the majority being idiopathic. Genomic data on ASD derive mostly from post-mortem brain analyses or cell lines derived from blood or patient-specific induced pluripotent stem cells (iPSCS).

View Article and Find Full Text PDF

The discovery of novel drugs for neurodegenerative diseases has been a real challenge over the last decades. The development of patient- and/or disease-specific models represents a powerful strategy for the development and validation of lead candidates in preclinical settings. The implementation of a reliable platform modeling dopaminergic neurons will be an asset in the study of dopamine-associated pathologies such as Parkinson's disease.

View Article and Find Full Text PDF

Age-related neurosensory deficit of the inner ear is mostly due to a loss of hair cells (HCs). Development of stem cell-based therapy requires a better understanding of factors and signals that drive stem cells into otic sensory progenitor cells (OSPCs) to replace lost HCs. Human induced pluripotent stem cells (hiPSCs) theoretically represent an unlimited supply for the generation of human OSPCs .

View Article and Find Full Text PDF

The inner ear represents a promising system to develop cell-based therapies from human induced pluripotent stem cells (hiPSCs). In the developing ear, Notch signaling plays multiple roles in otic region specification and for cell fate determination. Optimizing hiPSC induction for the generation of appropriate numbers of otic progenitors and derivatives, such as hair cells, may provide an unlimited supply of cells for research and cell-based therapy.

View Article and Find Full Text PDF

Stem cell-based therapies critically rely on selective cell migration toward pathological or injured areas. We previously demonstrated that human olfactory ectomesenchymal stem cells (OE-MSCs), derived from an adult olfactory lamina propria, migrate specifically toward an injured mouse hippocampus after transplantation in the cerebrospinal fluid and promote functional recoveries. However, the mechanisms controlling their recruitment and homing remain elusive.

View Article and Find Full Text PDF

Glioma tumour-initiating cells (GTICs) can originate upon the transformation of neural progenitor cells (NPCs). Studies on GTICs have focused on primary tumours from which GTICs could be isolated and the use of human embryonic material. Recently, the somatic genomic landscape of human gliomas has been reported.

View Article and Find Full Text PDF

With an onset under the age of 3 years, autism spectrum disorders (ASDs) are now understood as diseases arising from pre- and/or early postnatal brain developmental anomalies and/or early brain insults. To unveil the molecular mechanisms taking place during the misshaping of the developing brain, we chose to study cells that are representative of the very early stages of ontogenesis, namely stem cells. Here we report on MOlybdenum COfactor Sulfurase (MOCOS), an enzyme involved in purine metabolism, as a newly identified player in ASD.

View Article and Find Full Text PDF

Background: Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators with important functions in development and disease. Here, we sought to identify and functionally characterize novel lncRNAs critical for vertebrate development.

Methods And Results: By relying on human pluripotent stem cell differentiation models, we investigated lncRNAs differentially regulated at key steps during human cardiovascular development with a special focus on vascular endothelial cells.

View Article and Find Full Text PDF

Heart failure is a leading cause of mortality and morbidity in the developed world, partly because mammals lack the ability to regenerate heart tissue. Whether this is due to evolutionary loss of regenerative mechanisms present in other organisms or to an inability to activate such mechanisms is currently unclear. Here we decipher mechanisms underlying heart regeneration in adult zebrafish and show that the molecular regulators of this response are conserved in mammals.

View Article and Find Full Text PDF
Article Synopsis
  • The protocol outlines methods for turning human pluripotent stem cells into ureteric bud progenitor-like cells, crucial for kidney development research.
  • This differentiation process uses a two-step approach that involves in vitro culturing and ex vivo growth to form 3D kidney structures alongside mouse cells.
  • The resulting chimeric kidney cultures offer new avenues for studying human kidney development, disease modeling, regenerative medicine, and toxicology.
View Article and Find Full Text PDF

Reprogramming technologies have emerged as a promising approach for future regenerative medicine. Here, we report on the establishment of a novel methodology allowing for the conversion of human fibroblasts into hematopoietic progenitor-like cells with macrophage differentiation potential. SOX2 overexpression in human fibroblasts, a gene found to be upregulated during hematopoietic reconstitution in mice, induced the rapid appearance of CD34+ cells with a concomitant upregulation of mesoderm-related markers.

View Article and Find Full Text PDF

Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines.

View Article and Find Full Text PDF

Diseases affecting the kidney constitute a major health issue worldwide. Their incidence and poor prognosis affirm the urgent need for the development of new therapeutic strategies. Recently, differentiation of pluripotent cells to somatic lineages has emerged as a promising approach for disease modelling and cell transplantation.

View Article and Find Full Text PDF

Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement.

View Article and Find Full Text PDF

Reprogramming strategies allow for the generation of virtually any cell type of the human body, which could be useful for cell-based therapy. Among the different reprogramming technologies available, direct lineage conversion offers the possibility to change the phenotype of a cell type to another one without pushing cells backwards to a plastic/proliferative stage. This approach has raised the possibility to apply a similar process in vivo in order to compensate for functional cell loss.

View Article and Find Full Text PDF

Lineage conversion of one somatic cell type to another is an attractive approach for generating specific human cell types. Lineage conversion can be direct, in the absence of proliferation and multipotent progenitor generation, or indirect, by the generation of expandable multipotent progenitor states. We report the development of a reprogramming methodology in which cells transition through a plastic intermediate state, induced by brief exposure to reprogramming factors, followed by differentiation.

View Article and Find Full Text PDF

Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice.

View Article and Find Full Text PDF
Article Synopsis
  • The kidney's tubular epithelium can suffer damage from various factors, including immune disorders and nephrotoxins, making it essential to explore reliable cell models for research.
  • Primary renal epithelial cells are limited in their ability to model kidney diseases that originate during embryonic development, highlighting the need for better cellular systems.
  • Induced pluripotent stem cells (iPSCs), which can differentiate into any cell type, can be created from kidney cells using just two transcription factors, allowing for improved disease modeling and drug testing for kidney-related conditions.
View Article and Find Full Text PDF