The oxygen isotope ratio O/O (expressed as a δO value) in marine sedimentary rocks has increased by ~8‰ from the early Paleozoic to modern times. Interpretation of this trend is hindered by ambiguities in the temperature of formation of the carbonate, the δO, and the effects of postdepositional diagenesis. Carbonate clumped isotope measurements, a temperature proxy, offer constraints on this problem.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
Natural gas is a key energy resource, and understanding how it forms is important for predicting where it forms in economically important volumes. However, the origin of dry thermogenic natural gas is one of the most controversial topics in petroleum geochemistry, with several differing hypotheses proposed, including kinetic processes (such as thermal cleavage, phase partitioning during migration, and demethylation of aromatic rings) and equilibrium processes (such as transition metal catalysis). The dominant paradigm is that it is a product of kinetically controlled cracking of long-chain hydrocarbons.
View Article and Find Full Text PDFThe stable isotopes of sulfate, nitrate, and phosphate are frequently used to study geobiological processes of the atmosphere, ocean, as well as land. Conventionally, the isotopes of these and other oxyanions are measured by isotope-ratio sector mass spectrometers after conversion into gases. Such methods are prone to various limitations on sensitivity, sample throughput, or precision.
View Article and Find Full Text PDFSeveral large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation.
View Article and Find Full Text PDF