Nanoporous zinc borate (ZB) and 10% lanthanum-doped porous zinc borate (LZB) were synthesized to explore the role of porosity and doping in zinc borate during lubrication. HR-SEM, TEM, and HR-TEM authenticated nanoporous structures. The tribological properties of their blends with paraffin oil (PO) were compared by employing ASTM D4172 and ASTM D5183 norms on a four-ball tester.
View Article and Find Full Text PDFZirconia and 10%, 20%, and 30% cerium-doped zirconia nanoparticles (ZCO), ZCO-1, ZCO-2, and ZCO-3, respectively, were prepared using auto-combustion method. Binary nanohybrids, ZrO@rGO and ZCO-2@rGO (rGO = reduced graphene oxide), and ternary nanohybrids, ZrO@rGO@MoS and ZCO-2@rGO@MoS have been prepared with an anticipation of a fruitful synergic effect of rGO, MoS, and cerium-doped zirconia on the tribo-activity. Tribo-activity of these additives in paraffin oil (PO) has been assessed by a four-ball lubricant tester at the optimized concentration, 0.
View Article and Find Full Text PDFSome tetrahydropyrazolopyridines (THPP-H) with the methoxy (THPP-OMe) and methyl (THPP-Me) substituents were synthesized by a one-pot multi-component reaction. NMR spectroscopy (H and C) was used to authenticate the synthesis. According to the results of tribological tests ASTM D4172, and ASTM D5183 on a four-ball tester in paraffin oil (PO) at a concentration of 0.
View Article and Find Full Text PDFWater Sci Technol
February 2017
Silica nanoparticles with a surface area of 673.60 m/g and particle size of 8-12 nm were prepared using aerogel process (AP) followed by super critical drying. Zero valent Fe, Co, Pt, and bimetallic Fe/Pt and Fe/Co were loaded using an incipient wetness impregnation technique and subsequent reduction.
View Article and Find Full Text PDFA new anthraquinone (3,8-dihydroxy-2-methyl anthraquinone), named tectone (1), along with fourteen known compounds (2-15) comprised of five terpenoids (2-5, 15), four flavonoids (6-9), three flavone glycosides (10-12), and two phenolic glycosides (13-14) were isolated from the chloroform and n-butanol fractions of the ethanol extract of Tectona grandis leaves. Attempts were made to synthesize compound 1. This resulted in the synthesis of three additional anthraquinones (16-18), out of which compound 16 is new.
View Article and Find Full Text PDFEvidences have suggested that Tectona grandis (TG) attenuates gastric mucosal injury; however its mechanism has not yet been established. The aim of present study was to evaluate the gastroprotective mechanism of ethanolic extract of TG (E-EtOH), butanolic fraction (Fr-Bu) and to identify its active constituents. Anti-ulcer activities were evaluated against cold restraint (CRU) and pyloric ligation (PL) induced gastric ulcer models and further confirmed through H(+) K(+)-ATPase inhibitory activity.
View Article and Find Full Text PDF