Unlabelled: A ligninolytic peroxidase called versatile peroxidase, VP, (EC 1.11.1.
View Article and Find Full Text PDFProtein engineering to improve promiscuous catalytic activity is important for biocatalytic application of enzymes in green synthesis. We uncovered the significance of binding site residues in Arabidopsis thaliana hydroxynitrile lyase (AtHNL) for promiscuous retro-nitroaldolase activity. Engineering of AtHNL has improved enantioselective retro-nitroaldolase activity, a synthetically important biotransformation, for the production of enantiopure β-nitroalcohols having absolute configuration opposite to that of the stereopreference of the HNL.
View Article and Find Full Text PDFThe HtrA protease of Helicobacter pylori, which efficiently colonizes at the gastric epithelial of host cells, disrupts the mucosal integrity of E-cadherin and spreads inflammatory diseases including gastric cancer by cleaving the cell-cell adhesion of the host. The lack of knowledge on the molecular diversity, structural and functional behavior of HpHtrA necessitated the present study to explore its inhibition mechanism. At first, the similarity of HpHtrA with other gastro-intestinal pathogenic HtrA bacteria and its remote relationship with the Human HtrA homologs were ensured by the phylogenetic analysis and hence was identified as a novel therapeutic target for further design of inhibitors.
View Article and Find Full Text PDFThe inflammasome contains intracellular receptors that recognize various pathogen-associated molecular patterns and play crucial roles in innate immune responses to invading pathogens. Non-canonical inflammasome activation is mediated by caspase-4/11, which recognizes intracellular LPS and promotes pyroptosis and secretion of proinflammatory cytokines. species are infectious intracellular pathogens that replicate in professional and non-professional phagocytic cells and subvert immune responses for chronic persistence in the host.
View Article and Find Full Text PDFComput Struct Biotechnol J
May 2015
DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway.
View Article and Find Full Text PDF