Cell polarity refers to the asymmetric distribution of proteins and other molecules along a specified axis within a cell. Polarity establishment is the first step in many cellular processes. For example, directed growth or migration requires the formation of a cell front and back.
View Article and Find Full Text PDFTo investigate the fundamental question of how cellular variations arise across spatiotemporal scales in a population of identical healthy cells, we focused on nuclear growth in hiPS cell colonies as a model system. We generated a 3D timelapse dataset of thousands of nuclei over multiple days, and developed open-source tools for image and data analysis and an interactive timelapse viewer for exploring quantitative features of nuclear size and shape. We performed a data-driven analysis of nuclear growth variations across timescales.
View Article and Find Full Text PDFClimate change is significantly impacting agricultural production worldwide. Peanuts provide food and nutritional security to millions of people across the globe because of its high nutritive values. Drought and heat stress alone or in combination cause substantial yield losses to peanut production.
View Article and Find Full Text PDFDrug resistance is a major problem in treatment of microbial infections and cancers. There is growing evidence that a transient drug tolerant state may precede and potentiate the emergence of drug resistance. Therefore, understanding the mechanisms leading to tolerance is critical for combating drug resistance and for the development of effective therapeutic strategy.
View Article and Find Full Text PDFCells polarize their growth or movement in many different physiological contexts. A key driver of polarity is the Rho GTPase Cdc42, which when activated becomes clustered or concentrated at polar sites. Multiple models for polarity establishment have been proposed.
View Article and Find Full Text PDFNumerous applications in biology and medicine require the efficient and reliable separation of cells for disease diagnosis, genetic analysis, drug screening, and therapeutics. In this work, we demonstrate a novel technology that integrates a passive and an active device to separate, enrich and release cells on-demand from a complex blood sample, or cancer cells derived from a tissue biopsy. We exploit the high throughput (>1 mL min), size-based sorting capability of the passive spiral inertial microfluidic (iMF) device to focus particles/cells towards an active lateral cavity acoustic transducer (LCAT) device for size-selective enrichment.
View Article and Find Full Text PDFA wide range of microfluidic cell-sorting devices has emerged in recent years, based on both passive and active methods of separation. Curvilinear channel geometries are often used in these systems due to presence of secondary flows, which can provide high throughput and sorting efficiency. Most of these devices are designed on the assumption of two counter rotating Dean vortices present in the curved rectangular channels and existing in the state of steady rotation and amplitude.
View Article and Find Full Text PDFBlood cell sorting is critical to sample preparation for both clinical diagnosis and therapeutic research. The spiral inertial microfluidic devices can achieve label-free, continuous separation of cell mixtures with high throughput and efficiency. The devices utilize hydrodynamic forces acting on cells within laminar flow, coupled with rotational Dean drag due to curvilinear microchannel geometry.
View Article and Find Full Text PDF