Publications by authors named "Niurka Meneses"

In this work, we compared the proteomic profiles of outer membrane vesicles (OMVs) isolated from Rhizobium etli CE3 grown in minimal medium (MM) with and without exogenous naringenin. One-hundred and seven proteins were present only in OMVs from naringenin-containing cultures (N-OMVs), 57 proteins were unique to OMVs from control cultures lacking naringenin (C-OMVs) and 303 proteins were present in OMVs from both culture conditions (S-OMVs). Although we found no absolute predominance of specific types of proteins in the N-, C- or S-OMV classes, there were categories of proteins that were significantly less or more common in the different OMV categories.

View Article and Find Full Text PDF

Girentuximab (cG250) targets carbonic anhydrase IX (CAIX), a protein which is expressed on the surface of most renal cancer cells (RCCs). cG250 labeled with Lu has been used in clinical trials for radioimmunotherapy (RIT) of RCCs. In this work, an extensive characterization of the immunoconjugates allowed optimization of the labeling conditions with Lu while maintaining immunoreactivity of cG250, which was then investigated in in vitro and in vivo experiments.

View Article and Find Full Text PDF

Rhizobium etli CE3 grown in succinate-ammonium minimal medium (MM) excreted outer membrane vesicles (OMVs) with diameters of 40 to 100 nm. Proteins from the OMVs and the periplasmic space were isolated from 6 and 24 h cultures and identified by proteome analysis. A total of 770 proteins were identified: 73.

View Article and Find Full Text PDF

Flavonoids excreted by legume roots induce the expression of symbiotically essential nodulation (nod) genes in rhizobia, as well as that of specific protein export systems. In the bean microsymbiont Rhizobium etli CE3, nod genes are induced by the flavonoid naringenin. In this study, we identified 693 proteins in the exoproteome of strain CE3 grown in minimal medium with or without naringenin, with 101 and 100 exoproteins being exclusive to these conditions, respectively.

View Article and Find Full Text PDF

Background: The extracellular proteome or secretome of symbiotic bacteria like Rhizobium etli is presumed to be a key element of their infection strategy and survival. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. To find out the possible role of secreted proteins we analyzed the extracellular proteome of R.

View Article and Find Full Text PDF