Philos Trans R Soc Lond B Biol Sci
December 2024
Neurofeedback (NF) has emerged as a promising avenue for demonstrating process-related neuroplasticity, enabling self-regulation of brain function. NF targeting the amygdala has drawn attention to therapeutic potential in psychiatry, by potentially harnessing emotion-regulation processes. However, not all individuals respond equally to NF training, possibly owing to varying self-regulation abilities.
View Article and Find Full Text PDFA target question for the scientific study of consciousness is how dimensions of consciousness, such as the ability to feel pain and pleasure or reflect on one's own experience, vary in different states and animal species. Considering the tight link between consciousness and moral status, answers to these questions have implications for law and ethics. Here we point out that given this link, the scientific community studying consciousness may face implicit pressure to carry out certain research programs or interpret results in ways that justify current norms rather than challenge them.
View Article and Find Full Text PDFDespite decades of experimental and clinical practice, the neuropsychological mechanisms underlying neurofeedback (NF) training remain obscure. NF is a unique form of reinforcement learning (RL) task, during which participants are provided with rewarding feedback regarding desired changes in neural patterns. However, key RL considerations - including choices during practice, prediction errors, credit-assignment problems, or the exploration-exploitation tradeoff - have infrequently been considered in the context of NF.
View Article and Find Full Text PDFAwareness theory posits that individuals connected to a brain-computer interface can learn to estimate and discriminate their brain states. We used the amygdala Electrical Fingerprint (amyg-EFP) - a functional Magnetic Resonance Imaging-inspired Electroencephalogram surrogate of deep brain activation - to investigate whether participants could accurately estimate their own brain activation. Ten participants completed up to 20 neurofeedback runs and estimated their amygdala-EFP activation (depicted as a thermometer) and confidence in this rating during each trial.
View Article and Find Full Text PDFNeuropharmacotherapy is substantially hindered by poor drug targeting, resulting in low specificity and efficacy. It is known that different behavioral tasks increase functional activity and cerebral blood flow (CBF), two key parameters controlling drug delivery and efficacy. Here, we tested a novel, non-invasive drug targeting approach (termed functional-pharmacological coupling), which couples drug administration with a task that is known to specifically activate the drug's sites-of-action in the brain.
View Article and Find Full Text PDFThe original and corrected figures, and the Editorial Summary, are shown in the accompanying Publisher Correction.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe original and corrected text is shown in the accompanying Publisher Correction.
View Article and Find Full Text PDFFunctional MRI neurofeedback (NF) allows humans to self-modulate neural patterns in specific brain areas. This technique is regarded as a promising tool to translate neuroscientific knowledge into brain-guided psychiatric interventions. However, its clinical implementation is restricted by unstandardized methodological practices, by clinical definitions that are poorly grounded in neurobiology, and by lack of a unifying framework that dictates experimental choices.
View Article and Find Full Text PDF